Publication:
Finite temperature dynamics of vortices in the two dimensional anisotropic Heisenberg model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1998
Authors
Kamppeter, Till
Mertens, Franz G.
Sánchez, Angel
Bishop, A. R.
Grønbech-Jensen, N.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Description
© Springer International Publishing AG. We thank Esteban Moro and Grant Lythe for discussions. Travel between Bayreuth and Madrid is supported by “Acciones Integradas Hispano-Alemanas”, a joint program of DAAD (Az. 314-AI) and DGES. Travel between Europe and Los Alamos is supported by NATO grant CRG 971090. Work at Madrid and Legan´es is supported by CICyT (Spain) grant MAT95-0325 and by DGES (Spain) grant PB96-0119. Work at Los Alamos is supported by the United States Department of Energy.
Unesco subjects
Keywords
Citation
1. Nonlinearity in Condensed Matter, edited by A. R. Bishop, R. Ecke, and J. Gubernatis (Springer, Berlin, 1993). 2. Nonlinear Coherent Structures in Physics and Biology, edited by K. H. Spatschek and F. G. Mertens (Plenum, New York, 1994). 3. Fluctuation Phenomena: Disorder and Nonlinearity, edited by A. R. Bishop, S. Jiménez, and L. Vázquez (World Scientific, Singapore, 1995). 4. See, e.g., A. R. Bishop, in Ref. [3] 5. A. Sánchez and A. R. Bishop, SIAM Review in press (1998). 6. A.R.Völkel, F.G.Mertens, A.R.Bishop and G.M.Wysin, Phys. Rev. B43, 5992 (1991). 7. M.E.Gouvea, G.M.Wysin, A.R.Bishop and F.G.Mertens, Phys. Rev. B39, 11840 (1989). 8. G. M. Wysin, Phys. Lett. A, in press. 9. A.A.Thiele, Phys. Rev. Lett. 30, 230 (1973). 10. A.A.Thiele, J. Appl. Phys. 45, 377 (1974). 11. F.G.Mertens, H.-J. Schnitzer and A.R.Bishop, Phys. Rev. B 56, 2510 (1997). 12. G.M.Wysin, F.G.Mertens, A.R.Völkel and A.R.Bishop, in [2]. 13. A. R. Völkel, G. M. Wysin, F.G.Mertens, A.R.Bishop, and H. J. Schnitzer, Phys. Rev. B 50, 12 711 (1994). 14. F. G. Mertens, A. R. Bishop, G. M. Wysin, and C. Kawabata, Phys. Rev. B 39, 591 (1989). 15. J. F. Currie, J. A. Krumhansl, A. R. Bishop and S. E. Trullinger, Phys. Rev. B 22, 477 (1980). 16. K. Hirakawa, H. Yoshizawa, J. D. Axe, and G. Shirane, Suppl. J. Phys. Soc. Jpn. 52, 19 (1983); L. P. Regnault, J. P. Boucher, J. Rossat-Mignod, J. Bouillot, R. Pynn, J. Y. Henry, and J. P. Renard, Physica B+C 136B, 329 (1986); M. T. Hutchings, P. Day, E. Janke, and R. Pynn, J. Magn. Magn. Mater. 54-57, 673 (1986); S. T. Bramwell, M. T. Hutchings J. Norman, R. Pynn, and P. Day, J. de Phys. 49, C8-1435 (1988); D. G. Wiesler, H. Zabel, and S. M. Shapiro, Physica B 156-7, 292 (1989); D. G. Wiesler, H. Zabel, and S. M. Shapiro, Z. Physik B 93, 277 (1994); L. P. Regnault, C. Lartigue, J. F. Legrand, B. Farago, J. Rossat-Mignod, and J. Y. Henry, Physica B 156-7, 298 (1989). 17. P. Gaveau, J. P. Boucher, L. P. Regnault, and Y. Henry, J. Appl. Phys. 69, 6228 (1991). 18. D. L.Huber, Phys. Rev. B26, 3758 (1982). 19. The sign of our damping term differs from [9,10,20] because we work with spins while these authors deal with magnetisations. 20. S. Iida, J. Phys. Chem. Solids 24, 625 (1963). 21. T. Kamppeter, F. G. Mertens, A. Sánchez, N. Grønbech- Jensen, A. R. Bishop, and F. Domínguez-Adame, in “Theory of Spin Lattices and Lattice Gauge Models,” eds. M. L. Ristig, K. A. Gernoth and J.W. Clark. Springer-Verlag, Berlin (1997). 22. The correlation between different components of Fst can also be calculated and turns out to be zero. 23. S.Miyashita, H.Nishimori, A.Kuroda and M. Suzuki, Progress of Theor. Phys. 60, 1669 (1978). 24. H.-J. Schnitzer, Zur Dynamik kollektiver Anregungen in Hamiltonschen Systemen, Ph.D.-thesis, University of Bayreuth (1996). 25. N. Grønbech-Jensen and S. Doniach, J. Comp. Chem. 15, 997 (1994). 26. F.G.Mertens, G.M.Wysin, A.R.Völkel and A.R.Bishop, in [2]. 27. Strictly speaking, Eq. (48) must be solved in polar coordinates which leads to shifts of ω1,2 by ±ω0, respectively [11]. The different signs appear due to the phase differences ±π/2, below Eq. (38). 28. Yu. Gaididei, T. Kamppeter, F. G. Mertens and A. R. Bishop, submitted (August 1998). 29. Yu. Gaididei, T. Kamppeter, F. G. Mertens and A. R. Bishop, in preparation. 30. D. A. Dimitrov and G. M. Wysin, Phys. Rev. B 53, 8539 (1996). 31. J. E. R. Costa, B. V. Costa, and D. P. Landau, Phys. Rev. B 57, 11 510 (1998). 32. D. A. Dimitrov and G. M. Wysin, preprint (March 1998). 33. J. Schliemann, F. G. Mertens, and H. Frahn, in preparation.
Collections