Publication:
Tethered Monte Carlo: computing the effective potential without critical slowing down

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-02-01
Authors
Fernández Pérez, Luis Antonio
Martín Mayor, Víctor
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Description
© 2008 Elsevier B.V. We were partially supported by MEC (Spain) through contract No. FIS-2006-08533-C03-01 and by CAM (Spain) through contract No. CCG07-UCM/ESP-2532.
UCM subjects
Física (Física), Física-Modelos matemáticos
Unesco subjects
22 Física
Keywords
Citation
[1] D.J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, third ed., World Scientific, Singapore, 2005. [2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, third ed., Clarendon Press, Oxford, 1996. [3] A. Pelissetto, E. Vicari, Phys. Rep., 368 (2002) 549. [4] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, second ed., Cambridge Univ. Press, 2005 -- M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999. [5] A.D. Sokal, in: C. DeWitt-Morette, P. Cartier, A. Folacci (Eds.), Functional Integration: Basics and Applications, 1996 Cargèse school, Plenum, New York, 1997. [6] R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett., 58 (1987) 86 -- U. Wolff, Phys. Rev. Lett., 62 (1989) 361. [7] Y. Deng, T.M. Garoni, W. Guo, H.W.J. Blöte, A.D. Sokal, Phys. Rev. Lett., 98 (2007) 120601 -- Y. Deng, T.M. Garoni, A.D. Sokal, Phys. Rev. Lett., 99 (2007) 110601 -- Y. Deng, T.M. Garoni, A.D. Sokal, cond-mat/0701113 -- Y. Deng, T.M. Garoni, J. Machta, G. Ossola, M. Polin, A.D. Sokal, arXiv: 0705.2751. [8] H.J. Rothe, Lattice Gauge Theories: An Introduction, third ed., World Scientific, Singapore, 2005 -- M. Creutz, Quarks, Gluons and Lattices, Cambridge Univ. Press, 1985. [9] See, e.g., P.G. Benedetti, Metastable Liquids, Princeton Univ. Press, 1997. [10] See, e.g., M. Mezard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond, World Scientific, Singapore, 1987 -- J.A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor and Francis, London, 1993. [11] J.N. Onuchic, Z. Luthey-Schulten, P.G. Wolynes, Annu. Rev. Phys. Chem., 48 (1997) 545. [12] L. Onsager, Phys. Rev., 65 (1944) 117. [13] A.B. Zamolodchikov, Adv. Stud. Pure Math., 19 (1989) 641 -- A.B. Zamolodchikov, Int. J. Mod. Phys. A, 4 (1989) 4235. [14] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B, 473 (1996) 469 -- P. Fonseca, A. Zamolodchikov, J. Stat. Phys., 110 (2003) 527 -- See G. Delfino, J. Phys. A, 37 (2004) R45, for a review. [15] M. Caselle, P. Grinza, N. Magnoli, Nucl. Phys. B, 579 (2000) 635 -- P. Grinza, A. Rago, Nucl. Phys. B, 651 (2003) 387 -- M. Caselle, P. Grinza, A. Rago, J. Stat. Mech., 0410 (2004) P009. [16] N. Metropolis, A.W. Rosenbluth, N.M. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys., 21 (1953) 1087. [17] V. Martín-Mayor, Phys. Rev. Lett., 98 (2007) 137207. [18] L.A. Fernández, A. Gordillo-Guerrero, V. Martín Mayor, J.J. Ruiz-Lorenzo, Phys. Rev. Lett., 100 (2008) 057201. [19] M. Creutz, Phys. Rev. Lett., 50 (1983) 1411. [20] B.A. Berg, T. Neuhaus, Phys. Rev. Lett., 68 (1992) 9. [21] A. Nußbaumer, E. Bittner, T. Neuhaus, W. Janke, Europhys. Lett., 75 (2006) 716 -- A. Nußbaumer, E. Bittner, W. Janke, Phys. Rev. E, 77 (2008) 041109. [22] F. Wang, D.P. Landau, Phys. Rev. Lett., 86 (2001) 2050. [23] C. Zhou, T.C. Schulthess, S. Torbrügge, D.P. Landau, Phys. Rev. Lett., 96 (2006) 120201 -- S.-H. Tsai, F. Wang, D.P. Landau, Phys. Rev. E, 75 (2007) 061108. [24] K. Kawasaki, Phys. Rev., 145 (1966) 224. [25] B.M. McCoy, T.T. Wu, The Two Dimensional Ising Model, Harvard Univ. Press, 1973. [26] A.E. Ferdinand, M.E. Fisher, Phys. Rev., 185 (1969) 832. [27] F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210 (1982) 210. [28] S. Caracciolo, R.G. Edwards, S.J. Ferreira, A. Pelissetto, A.D. Sokal, Phys. Rev. Lett., 74 (1995) 2969. [29] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378 (1996) 207 -- H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Nucl. Phys. B, 483 (1997) 707. [30] F. Belletti, et al., JANUS Collaboration, Comput. Sci. Eng., 8 (2006) 41 -- F. Belletti, et al., JANUS Collaboration, Comput. Phys. Commun., 178 (2008) 208, arXiv: 0710.3535. [31] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, second ed., Cambridge Univ. Press, 1992. [32] G. Ossola, A.D. Sokal, Nucl. Phys. B, 691 (2004) 259. [33] G. Ossola, A.D. Sokal, Phys. Rev. E, 70 (2004) 027701. [34] G. Parisi, F. Rapuano, Phys. Lett. B, 157 (1985) 301. [35] P.C. Hohenberg, B. Halperin, Rev. Mod. Phys., 49 (1977) 435. [36] P. Tamayo, W. Klein, Phys. Rev. Lett., 63 (1989) 2757. [37] J. Salas, A.D. Sokal, J. Stat. Phys., 98 (2000) 551. [38] H.G. Ballesteros, L.A. Fernández, A. Muñoz Sudupe, V. Martín-Mayor, Phys. Lett. B, 387 (1996) 125. [39] M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vicari, J. Phys. A: Math. Gen., 34 (2001) 2923. [40] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, P. Weisz, Nucl. Phys. B, 583 (2000) 614. [41] J.-K. Kim, J. Phys. A: Math. Gen., 33 (2000) 2675. [42] M. Sweeny, Phys. Rev. B, 27 (1983) 4445 -- U. Wolff, Nucl. Phys. B, 300 (1988) 501. [43] C.N. Yang, Phys. Rev., 85 (1952) 808. [44] T. Natterman, in: A.P. Young (Ed.), Spin Glasses and Random Fields, World Scientific, Singapore, 1997. [45] A. Maiorano, V. Martín-Mayor, J.J. Ruiz-Lorenzo, A. Tarancón, Phys. Rev. B, 76 (2007) 064435. [46] M. Biskup, L. Chayes, R. Kotecký, Europhys. Lett., 60 (2002) 21 -- K. Binder, Physica (Amsterdam), 319A (2003) 99 -- L.G. MacDowell, P. Virnau, M. Müller, K. Binder, J. Chem. Phys., 120 (2004) 5293.