Publication:
Janus: an FPGA-based system for high-performance scientific computing

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE Computer Soc.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ≈1000. We also discuss the role of JANUS on other classes of scientific applications.
Description
© 2009, IEEE. Artículo firmado por 23 autores. We thank M. Lena and S. Sialino for their outstanding support during the commissioning of the first JANUS system.
Unesco subjects
Keywords
Citation
[1] D. P. Landau, K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics”, Cambridge University Press, (2005). [2] see the papers contained in the special issue of Computing in Science and Engineering, vol 8, number 1, January/February 2006, (S. Gottlieb Guest Editor). [3] see for instance P. Young, “Spin Glasses and Random Fields” World Scientific, (1998). [4] K. Huang, ”Statistical Mechanics”, Wiley (1987). [5] B. M. Forrest, L. H. Tang, J. Stat. Phys., 60, (1990) 181 [6] K. Asanovic, et al., “The Landscape of Parallel Computing Research: A View from Berkeley”, Tech. Report, UCB/EECS-2006-183, (2006). [7] F. Belletti, et al., “JANUS: An Adaptive FPGA Computer”, Computing in Science and Engineering, vol 8, number 1, January/February 2006, 41. [8] A. Cruz, et al., Comp. Phys. Comm., 133, (2001) 165. [9] G. Parisi, F. Rapuano, Phys. Lett. B, 157, (1985) 301 [10] S. Sumimoto, et al., “The design and evaluation of high performance communication using a Gigabit Ethernet”, Proceedings of the 13th international conference on Supercomputing, (1999) 260. [11] Belletti, et al., “Simulating spin systems on IANUS, an FPGA-based computer”, Computer Physics Communications, 178/3, pp. 208-216 (2008). [12] R. L. Brooks, ”On colouring the nodes of a network”. Proc. Cambridge Phil. Soc., 37: 194-197 (1941) [13] D. S. Johnson, et al., “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning”, Operations Research, 39, 378-406 (1991) [14] F.Y. Wu, Rev. Mod. Phys., 54, 235 (1982). [15] E. Domany, M. Schick, J. S. Walker, Phys. Rev. Lett., 38, 1148 (1977). [16] R. L. Park, T. L. Einstein, A. R. Kortan, L. D. Roelofs, in Ordering in Two Dimensions, edited by S. K. Sinha (North-Holland, New York), p.17 (1980). [17] L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev. Lett., 73, 296 (1994) -- ibid., Phys. Rev. B, 52, 9275 (1995). [18] E. Domany, Y. Shnidman, D. Mukamel, J. Phys. C., 15 L, 495 (1982). [19] E. Marinari, S. Mossa, G. Parisi, Phys. Rev. B, 59, 8401 (1999). [20] F. Belletti, et al., QCD on the Cell Broadband Engine, Proceedings of Science (PoS) (Lattice 2007) 039.
Collections