Publication:
Lack of bipolar see-saw in response to Southern Ocean wind reduction

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-06-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A cessation of the Atlantic meridional overturning circulation (AMOC) significantly reduces northward oceanic heat transport. In response to anomalous freshwater flux, this leads to the classic 'bipolar see-saw' pattern of northern cooling and southern warming in surface air and ocean temperatures. By contrast, as shown here in a coupled climate model, both northern and southern cooling are observed for an AMOC reduction in response to reduced wind stress in the Southern Ocean (SO). For very weak SO wind stress, not only the overturning circulation collapses, but sea ice export from the SO is strongly reduced. Consequently, sea ice extent and albedo increase in this region. The resulting cooling overcompensates the warming by the reduced northward heat transport. The effect depends continuously on changes in wind stress and is reversed for increased winds. It may have consequences for abrupt climate change, the last deglaciation and climate sensitivity to increasing atmospheric CO_2 concentration.
Description
© 2007 by the American Geophysical Union. We are grateful to J. R. Toggweiler and J. Mignot for useful comments on the manuscript. A.L. was funded by the Gary Comer foundation, M.M. by the Ramón y Cajal Program and project CGL2005-06097/CLI of the Spanish Ministry for Science and Education.
Unesco subjects
Keywords
Citation
Blunier, T., et al. (1998), Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739 – 743. Crowley, T. J. (1992), North Atlantic Deep Water cools the Southern Hemisphere, Paleoceanography, 7, 489 – 497. Crowley, T. J., and G. R. North (1991), Paleoclimatology, 349 pp., Oxford Univ. Press, Oxford, U. K. EPICA-Project (2006), Eight glacial cycles from an Antarctic ice core, Nature, 444, 195 – 198. Fichefet, T., and M. A. Morales Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12,609 – 12, 646. Fyfe, J. C., and O. A. Saenko (2006), Simulated changes in the extratropical Southern Hemisphere winds and currents, Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332. Ganachaud, A., and C. Wunsch (2000), Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453 – 457. Ganopolski, A., and S. Rahmstorf (2001), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153 – 158. Hofmann, M., and M. A. Morales Maqueda (2006), Performance of a second-order moments advection scheme in an Ocean General Circulation Model, J. Geophys. Res., 111, C05006, doi:10.1029/2005JC003279. Kistler, R., et al. (2001), The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 82, 247 – 267. Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf (2007), On the driving processes of the Atlantic meridional overturning circulation, Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166. Levermann, A., A. Griesel, M. Hofmann, M. Montoya, and S. Rahmstorf (2005), Dynamic sea level changes following changes in the thermohaline circulation, Clim. Dyn., 24, 347 – 354. Manabe, S., and R. J. Stouffer (1995), Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165 – 167. Meehl, G. A., et al. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, in press. Mignot, J., A. Levermann, and A. Griesel (2006), A decomposition of the Atlantic meridional overturning circulation into physical components using its sensitivity to vertical diffusivity, J. Phys. Oceanogr., 36, 636 – 650. Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf (2005), The Earth system model of intermediate complexity CLIMBER-3a. part I: Description and performance for present day conditions, Clim. Dyn., 25, 237 – 263. North Greenland Ice Core Project members (2004), High-resolution record of Northern Hemisphere climate extending into the last glacial period, Nature, 431, 147 – 151. Pacanowski, R. C., and S. M. Griffies (1999), The MOM-3 manual, Tech. Rep. 4, NOAA Geophys. Fluid Dyn. Lab., Princeton, N. J. Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf (2000), CLIMBER-2: A climate system model of intermediate complexity. part I: Model description and performance for present climate, Clim. Dyn., 16, 1 – 17. Prather, M. J. (1986), Numerical advection by conservation of second-order moments, J. Geophys. Res., 91, 6671 – 6681. Rahmstorf, S., and M. H. England (1997), Influence of Southern Hemisphere winds on North Atlantic Deep Water flow, J. Phys. Oceanogr., 27, 2040 – 2054. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108(D14), 4407, doi:10.1029/ 2002JD002670 Steig, E. J., and R. B. Alley (2002), Phase relationship between Antarctic and Greenland climate records, Ann. Glaciol., 35, 451 – 456. Stouffer, R. J., et al. (2006), Investigating the causes of the response of the thermohaline circulation to past and future climate changes, J. Clim., 19, 1365 – 1387. Talley, L. D. (2003), Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530 – 560. Toggweiler, J. R., and B. Samuels (1995), Effect of Drake Passage on the global thermohaline circulation, Deep Sea Res., Part I, 42, 477 – 500. Toggweiler, J. R., J. L. Russell, and S. R. Carson (2006), Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154. Vellinga, M., and R. A. Wood (2002), Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Change, 54, 251 – 267. Vellinga, M., and R. A. Wood (2007), Impacts of thermohaline circulation shutdown in the twenty-first century, Clim. Change, doi:110.1007/s10584-006-9146-y. Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica (2003), Meltwater pulse 1a from Antarctica as a trigger of the Bølling-Allerød Warm Interval, Science, 299, 1709 – 1713. Wunsch, C. (2003), Determining pale oceanographic circulations, with emphasis on the Last Glacial Maximum, Quat. Sci. Rev., 22, 371 – 385. Zickfeld, K., A. Levermann, H. M. Granger, S. Rahmstorf, T. Kuhlbrodt, and D. W. Keith (2007), Expert judgements on the response of the Atlantic meridional overturning circulation to climate change, Clim. Change, 82, 235 – 265.
Collections