Publication:
Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-09-21
Authors
Bauer, E.
Ganopolski, A.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The cold climate anomaly about 8200 years ago is investigated with CLIMBER-2, a coupled atmosphere-ocean-biosphere model of intermediate complexity. This climate model simulates a cooling of about 3.6 K over the North Atlantic induced by a meltwater pulse from Lake Agassiz routed through the Hudson strait. The meltwater pulse is assumed to have a volume of 1.6 x 10^14 m^3 and a period of discharge of 2 years on the basis of glaciological modeling of the decay of the Laurentide Ice Sheet ( LIS). We present a possible mechanism which can explain the centennial duration of the 8.2 ka cold event. The mechanism is related to the existence of an additional equilibrium climate state with reduced North Atlantic Deep Water (NADW) formation and a southward shift of the NADW formation area. Hints at the additional climate state were obtained from the largely varying duration of the pulse-induced cold episode in response to overlaid random freshwater fluctuations in Monte Carlo simulations. The model equilibrium state was attained by releasing a weak multicentury freshwater flux through the St. Lawrence pathway completed by the meltwater pulse. The existence of such a climate mode appears essential for reproducing climate anomalies in close agreement with paleoclimatic reconstructions of the 8.2 ka event. The results furthermore suggest that the temporal evolution of the cold event was partly a matter of chance.
Description
© 2004 by the American Geophysical Union. This work was supported by the Research Grant 01 LG 9906 of BMBF. The work benefited from discussions with Reinhard Calov, Stefan Rahmstorf, and Sushma Prasad. The time series from GRIP and NorthGRIP were kindly provided by Sigfus Johnsen. The authors thank Hans Renssen and the anonymous Referee for their valuable comments on the manuscript.
Unesco subjects
Keywords
Citation
Alley, R. B., P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor, and P. U. Clark (1997), Holocene climate instability: A prominent, widespread event 8200 yr ago, Geology, 25(6), 483 – 486. Alley, R. B., et al. (2003), Abrupt climate change, Science, 299, 200 – 210. Arz, H. W., F. Lamy, J. Pätzold, P. J. Müller, and M. Prins (2003), Mediterranean moisture source for early-Holocene humid period in the Red Sea, Science, 300, 118 – 121. Baldini, J. U. L., F. McDermott, and I. J. Fairchild (2002), Structure of the 8200-year cold event by speleothem trace element record, Science, 296, 2203 – 2206. Barber, D. C., et al. (1999), Forcing of the cold event of 8,200 years ago by a catastrophic drainage of Laurentide lakes, Nature, 400, 344 – 348. Bauer, E., M. Claussen, V. Brovkin, and A. Hünerbein (2003), Assessing climate forcings of the Earth system for the past millennium, Geophys. Res. Lett., 30(6), 1276, doi:10.1029/2002GL016639. Berger, A. L. (1978), Long-term variations of daily insolation and Quaternary climate changes, J. Atmos. Sci., 35, 2362 – 2367. Bianchi, G. G., and I. N. McCave (1999), Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland, Nature, 397, 515 – 517. Bond, G., B. Kromer, J. Beer, R. Muscheler, M. N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, and G. Bonani (2001), Persistent solar influence on the North Atlantic climate during the Holocene, Science, 294, 2130 – 2136. Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and A. Andreev (2002), Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, 16(4), 1139, doi:10.1029/2001GB001662. Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi, and J. T. Teller (2001), Freshwater forcing of abrupt climate change during the last glaciation, Science, 293, 283 – 287. Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver (2002), The role of the thermohaline circulation in abrupt climate change, Nature, 415, 863 – 869. Clarke, G. K. C., D. W. Leverington, J. T. Teller, and A. S. Dyke (2004), Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event, Quat. Sci. Rev., 23, 389 – 407. Crowley, T. J. (1992), North Atlantic deep water cools the Southern Hemisphere, Paleoceanography, 7(4), 489 – 497. Cubasch, U., R. Voss, G. C. Hegerl , J. Waszkewitz, and T. J. Crowley (1997), Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model, Clim. Dyn., 13, 757 – 767. Cuffey, K. M., and G. D. Clow (1997), Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition, J. Geophys. Res., 102(C12), 26,383 – 26,369. Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling (1998), Past temperatures directly from the Greenland Ice Sheet, Science, 282, 268 – 271. Dansgaard, W., et al. (1993), Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218 – 220. Dean, W. E., R. M. Forester, and J. P. Bradbury (2002), Early Holocene change in atmospheric circulation in the Northern Great Plains: An upstream view of the 8.2 ka cold event, Quat. Sci. Rev., 21, 1763 – 1775. deMenocal, P., J. Ortiz, T. Guilderson, and M. Sarnthein (2000), Coherent high- and low-latitude climate variability during the Holocene warm period, Science, 288, 2199 – 2202. Fanning, A., and A. J. Weaver (1997), Temporal-geographical meltwater influences on the North Atlantic conveyer: Implications for the Younger Dryas, Paleoceanography, 12, 307 – 320. Ganopolski, A., and S. Rahmstorf (2001a), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153 – 158. Ganopolski, A., and S. Rahmstorf (2001b), Stability and variability of the thermohaline circulation in the past and future: A study with a coupled model of intermediate complexity, in The Oceans and Rapid Climate Change: Past, Present, and Future, Geophys. Monogr. Ser., vol. 126, edited by D. Seidov, B. J. Haupt, and M. Maslinpp, pp. 261 – 275, AGU, Washington, D. C. Ganopolski, A., V. K. Petoukhov, S. Rahmstorf, V. Brovkin, M. Claussen, A. Eliseev, and C. Kubatzki (2001), CLIMBER-2: A climate system model of intermediate complexity. Part II: Sensitivity experiments, Clim. Dyn., 17, 735 – 751. Gasse, F. (2000), Hydrological changes in the African tropics since the Last Glacial Maximum, Quat. Sci. Rev., 19, 189 – 211. Goosse, H., H. Renssen, F. M. Selten, R. J. Haarsma, and J. D. Opsteegh (2002), Potential causes of abrupt climate events: A numerical study with a three-dimensional climate model, Geophys. Res. Lett. , 2 9 (18), 1860, doi:10.1029/2002GL014993. Hu, F. S., D. Slawinski, H. E. Wright Jr., E. Ito, R. G. Johnson, K. R. Kelts, R. F. McEwan, and A. Boedigheimer (1999), Abrupt changes in North American climate during early Holocene times, Nature, 400, 437 – 443. Johnsen, S. J., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup (1995), Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus, Ser. B, 47, 624 – 629. Johnsen, S. J., et al. (1997), The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability, J. Geophys. Res., 102(C12), 26,397 – 26,411. Johnsen, S. J., D. Dahl-Jensen, N. Gundestrup, J. P. Steffensen, H. B. Clausen, H. Miller, V. Masson-Delmotte, E. Sveinbjrnsdttir, and J. White (2001), Oxygen isotope and palaeotemperature records from six Greenland icecore stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quat. Sci., 16, 299 – 307. Jouzel, J., et al. (1997), Validity of the temperature reconstructions from water isotopes in ice cores, J. Geophys. Res., 102, 26,471 – 26,487. Klitgaard -Kristensen, D., H. P. Sejrup, H. Haflidason, S. Johnsen, and M. Spurk (1998), A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation?, J. Quat. Sci., 13(2), 165 – 169 Korhola, A., K. Vasko, H. T. T. Toivonen, and H. Olander (2002), Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling, Quat. Sci. Rev., 21, 1841 – 1860. Leuenberger, M. C., C. Lang, and J. Schwander (1999), Delta 15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: A case study for the 8200 B. P. event on GRIP ice, J. Geophys. Res., 104, 22,163 – 22,170. Leverington, D. W., J. D. Mann, and J. T. Teller (2002), Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7700 14C yr B. P., Quat. Res., 57, 244 – 252. Licciardi, J. M., P. U. Clark, J. W. Jenson, and D. R. MacAyeal (1998), Deglaciation of softbedded Laurentide Ice Sheet, Quat. Sci. Rev., 17, 427 – 448. Magny, M., C. Begeot, J. Guiot, and O. Peyron (2003), Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases, Quat. Sci. Rev., 22, 1589 – 1596. Maier-Reimer, E., and U. Mikolajewicz (1989), Experiments with an OGCM on the cause of the Younger Dryas, in Oceanography, edited by A. Ayala-Castanares, W. Wooster, and A. Yanez-Arancibia, pp. 87 – 100, UNAM Press, Mexico City. Manabe, S., and R. J. Stouffer (1995), Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165 – 167. Manabe, S., and R. J. Stouffer (1997), Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event, Paleoceanography, 12(2), 321 – 336. Marshall, S. J., and G. K. C. Clarke (1999), Modeling North American freshwater runoff through the last glacial cycle, Quat. Res., 52, 300 – 315. Masson, V., et al. (2000), Holocene climate variability in Antarctica based on 11 ice-core isotopic records, Quat. Res., 54, 348 – 358. Muscheler, R., J. Beer, and B. Kromer (2003), Long-term climate variations and solar effects, in Solar Variability as an Input to the Earth’s Environment, edited by A. Wilson, pp. 305 – 316, Eur. Space Ag., Paris. Neff, U., S. J. Burns, A. Mangini, M. Mudelsee, D. Fleitmann, and A. Matter (2001), Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature, 411, 290 – 293. Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf (2000), CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate, Clim. Dyn., 16, 1 – 17. Rahmstorf, S. (1995a), Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle, Nature, 378, 145 – 149. Rahmstorf, S. (1995b), Multiple convection patterns and thermohaline flow in an idealized OGCM, J. Clim., 8, 3028 – 3039. Rahmstorf, S. (2002), Ocean circulation and climate during the past 12,0000 years, Nature, 419, 207 – 214. Raynaud, D., J.-M. Barnola, J. Chappellaz, T. Blunier, A. Indermühle, and B. Stauffer (2000), The ice record of greenhouse gases: A view in the context of future changes, Quat. Sci. Rev., 19, 9 – 17. Renssen, H., H. Goosse, T. Fichefet, and J.-M. Campin (2001), The 8. 2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model, Geophys. Res. Lett., 28(8), 1567 – 1570. Renssen, H., H. Goosse, and T. Fichefet (2002), Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability, Paleoceanography, 17(2), 1020, doi:10.1029/2001PA000649. Shuman, B., P. Bartlein, N. Logar, P. Newby, and T. Webb II (2002), Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet, Quat. Sci. Rev., 21, 1793 – 1805. Spooner, I., M. S. V. Douglas, and L. Terrusi (2002), Multiproxy evidence of an early Holocene (8.2 kyr) climate oscillation in central Nova Scotia, Canada, J. Quat. Sci., 17(7), 639 – 645. Stocker, T. F., and D. G. Wright (1991), Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes, Nature, 351, 729 – 732. Teller, J. T., D. W. Leverington, and J. D. Mann (2002), Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, Quat. Sci. Rev., 21, 879 – 887. Thompson, L. G., T. Yao, M. E. Davis, K. A. Henderson, E. Mosley-Thompson, P.-N. Lin, J. Beer, H.-A. Synal, J. Cole- Dai, and J. F. Bolzan (1997), Tropical climate instability: The last glacial cycle from a Qinghai-Tibetian ice core, Science, 276, 1821 – 1825. Thompson, L. G., et al. (1998), A 25,000-year tropical climate history from Bolivian ice cores, Science, 282, 1858 – 1864. Thompson, L. G., et al. (2002), Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa, Science, 298, 589 – 593. Tinner, W., and A. F. Lotter (2001), Central European vegetation response to abrupt climate change at 8.2 ka, Geology, 29(6), 551 – 554. van Geel, B., O. M. Raspopov, H. Renssen, J. van der Plicht, V. A. Dergachev, and H. A. J. Meijer (1999), The role of solar forcing upon climate change, Quat. Sci. Rev., 18, 331 – 338. von Grafenstein, U., H. Erlenkeuser, J. Mller, J. Jouzel, and S. Johnsen (1998), The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland, Clim. Dyn., 14, 73 – 81. von Grafenstein, U., H. Erlenkeuser, A. Brauer, J. Jouzel, and S. Johnsen (1999), A midEuropean decadal isotope-climate record from 15,500 to 5000 years B. P., Science, 284, 1654 – 1657. Wright, D. G., and T. F. Stocker (1993), Younger Dryas experiments, in Ice in the Climate System, edited by W. R. Peltier, pp. 395 – 416, Springer-Verlag, New York. Yu, Z., and U. Eicher (1998), Abrupt climate oscillations during the last deglaciation in central North America, Science, 282, 2235 – 2238.
Collections