Publication:
Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-04-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
Description
©2016 American Physical Society. A.D. thanks N. Goldman and P. Gaspard for support and valuable discussions. We acknowledge support by the Spanish MINECO Grant No. FIS2012-33152, FIS2015-67411, the CAM research consortium QUITEMAD+ S2013/ICE-2801, F.R.S.-FNRS Belgium, EU grants OSYRIS (ERC-2013-AdG Grant No. 339106), EQuaM (FP7/2007-2013 Grant No. 323714, SIQS (FP7-ICT-2011-9 No. 600645), QUIC (H2020-FETPROACT-2014 No. 641122), Spanish MINECO grants (Severo Ochoa SEV-2015-0522 and FOQUS FIS2013-46768-P), Catalan AGAUR SGR 874, Fundacio Cellex, and the U.S. Army Research Office through Grant No. W911NF-14-1-0103.
Unesco subjects
Keywords
Citation
1. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, Oxford, U.K., 2004). 2. B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, NJ, 2013). 3. A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and Quantum Computation (American Mathematical Society, Providence, RI, 2002). 4. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008). 5. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 6. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 7. J. E. Moore, Nature (London) 464, 194 (2010). 8. M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007). 9. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 452, 970 (2008). 10. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009). 11. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 12. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). 13. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007). 14. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007). 15. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). 16. A. Kitaev, AIP Conf. Proc. 1134, 22 (2009). 17. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys. 12, 065010 (2010). 18. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010). 19. T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010). 20. M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev. X 3, 031005 (2013). 21. M. Hohenadler and F. F. Assaad, J. Phys.: Condens. Matter 25, 143201 (2013). 22. S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008). 23. K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009). 24. J. Wen, A. Rüegg, C.-C. Joseph Wang, and G. A. Fiete, Phys. Rev. B 82, 075125 (2010). 25. Q. Liu, H. Yao, and T. Ma, Phys. Rev. B 82, 045102 (2010). 26. W.-F. Tsai, C. Fang, H. Yao, and J. Hu, New J. Phys. 17, 055016 (2015). 27. B. Dóra, I. F. Herbut, and R. Moessner, Phys. Rev. B 90, 045310 (2014). 28. C. Weeks and M. Franz, Phys. Rev. B 81, 085105 (2010). 29. A. G. Grushin, E. V. Castro, A. Cortijo, F. de Juan, M. A. H. Vozmediano, and B. Valenzuela,Phys. Rev. B 87, 085136 (2013). 30. N. A. García-Martínez, A. G. Grushin, T. Neupert, B. Valenzuela, and E. V. Castro, Phys. Rev. B88, 245123 (2013). 31. M. Daghofer and M. Hohenadler, Phys. Rev. B 89, 035103 (2014). 32. T. Đurić, N. Chancellor, and I. F. Herbut, Phys. Rev. B 89, 165123 (2014). 33. A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 86, 053618 (2012). 34. S. Kitamura, N. Tsuji, and H. Aoki, Phys. Rev. Lett. 115, 045304 (2015). 35. X. Li and S. D. Sarma, Nat. Commun. 6, 7137 (2015). 36. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett.111, 185301 (2013). 37. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013). 38. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2014). 39. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014). 40. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012). 41. T. Uehlinger, D. Greif, G. Jotzu, L. Tarruell, T. Esslinger, L. Wang, and M. Troyer, Eur. Phys. J. Spec. Top. 217, 121 (2013). 42. S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi, Sci. Adv. 1, e1500854 (2015). 43. R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys. Rev. Lett. 114, 245503 (2015). 44. D. Guzmán-Silva, C. Mejía-Cortés, M. A. Bandres, M. C. Rechtsman, S. Weimann, S. Nolte, M. Segev, A. Szameit, and R. A. Vicencio, New J. Phys. 16, 063061 (2014). 45. S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett. 114, 245504 (2015). 46. N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010). 47. G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Phys. Rev. Lett. 104, 223002 (2010). 48. J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Low, and T. Pfau, New J. Phys. 16, 063012 (2014). 49. R. M. W. van Bijnen and T. Pohl, Phys. Rev. Lett. 114, 243002 (2015). 50. M. Viteau, M. G. Bason, J. Radogostowicz, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 107, 060402 (2011). 51. P. Schauss, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature (London) 491, 87 (2012). 52. P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macr, T. Pohl, I. Bloch, and C. Gross,Science 347, 1455 (2015). 53. T. M. Weber, M. Höning, T. Niederprum, T. Manthey, O. Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, and H. Ott, Nat. Phys. 11, 157 (2015). 54. H. Labuhn, D. Barredo, S. Ravets, S. de Leseleuc, T. Macri, T. Lahaye, and A. Browaeys,arXiv:1509.04543. 55. R. Shen, L. B. Shao, B. Wang, and D. Y. Xing, Phys. Rev. B 81, 041410 (2010). 56. V. Apaja, M. Hyrkäs, and M. Manninen, Phys. Rev. A 82, 041402 (2010). 57. C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010). 58. The latter can be verified by computing the transverse conductivity σxy=∑iCiσ0, which is proportional to the sum of the Chern numbers Ci of the occupied bands and to the conductivity quantum σ0 [59], yielding σxy=0. 59. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). 60. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, U.K., 2004). 61. T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674 (2005). 62. N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83, 063601 (2011). 63. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010). 64. E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011). 65. H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012). 66. A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302 (2013). 67. L. Wang, A. A. Soluyanov, and M. Troyer, Phys. Rev. Lett. 110, 166802 (2013). 68. P. Hauke, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 113, 045303 (2014). 69. D.-L. Deng, S.-T. Wang, and L.-M. Duan, Phys. Rev. A 90, 041601 (2014). 70. N. Goldman, J. Beugnon, and F. Gerbier, Phys. Rev. Lett. 108, 255303 (2012). 71. N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman,Proc. Natl. Acad. Sci. USA 110, 6736 (2013). 72. T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, U.K., 1994).
Collections