Publication:
Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-08
Authors
Arganda, E.
Minaya Flores, Ignacio Andrés
Vázquez Peñas, José Ramón
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Heidelberg
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The energy spectrum of ultra-high energy cosmic rays above 10(18)eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.
Description
© Societá Italiana di Fisica / Springer-Verlag 2012. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por más de 10 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015 and TACR TA01010517, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
UCM subjects
Keywords
Citation
1. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 100, 101101 (2008). 2. The Pierre Auger Collaboration, Phys. Lett. B 685, 239 (2010). 3. The Pierre Auger Collaboration, Phys. Rev. Lett. 101, 061101 (2008). 4. F. Salamida, for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4809. 5. Telescope Array Collaboration, submitted to Phys. Rev. Lett., arXiv:1205.5067v1. 6. K. Greisen, Phys. Rev. Lett. 16, 748 (1966). 7. G.T. Zatsepin, V.A. Kuz’min, Pis’ma Zh. Eksp. Teor. Fiz. 4, 114 (1966). 8. J. Linsley, Proc. 8th ICRC, Jaipur 4, 77 (1963). 9. M.A. Lawrence, R.J.O. Reid, A.A. Watson, J. Phys. G 17, 733 (1991). 10. M. Nagano et al., J. Phys. G 18, 423 (1992). 11. D.J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993). 12. A.M. Hillas, Cosmic Rays (Pergamon Press, Oxford, 1972). 13. T. Wibig, A.W. Wolfendale, J. Phys. G 31, 255 (2005). 14. A.M. Hillas, J. Phys. G 31, R95 (2005). 15. A.M. Hillas, Cosmic Rays: Recent Progress and some Current Questions, arXiv:0607109. 16. B. Peters, Nuovo Cimento 22, 800 (1961). 17. A.M. Hillas, Phys. Lett. A 24, 677 (1967). 18. G.R. Blumenthal, Phys. Rev. D 1, 1596 (1970). 19. V. Berezinsky, A.Z. Gazizov, S.I. Grigorieva, Phys. Rev. D 74, 043005 (2006). 20. V.S. Berezinsky, S.I. Grigorieva, B.I. Hnatyk, Astropart. Phys. 21, 617625 (2004). 21. The Pierre Auger Collaboration, Phys. Rev. Lett. 104, 091101 (2010). 22. P. Facal et al. for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4804. 23. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 104, 161101 (2010). 24. HiRes/MIA Collaboration (T. Abu-Zayyad et al.), Astrophys. J. 557, 686 (2001). 25. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Proc. XVI ISVHECRI, (2010). 26. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Nucl. Phys. B 212-213, 241 (2011). 27. C. Jui et al. for the Telescope Array Collaboration, Proc. APS DPF Meeting, arXiv:1110.0133. 28. The Pierre Auger Collaboration, Astropart. Phys. 34, 368 (2011). 29. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 523, 50 (2004). 30. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 613, 29 (2010). 31. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 620, 227 (2010). 32. B.R. Dawson, M. Giller, G. Wieczorek, Proc. 30th ICRC 2007, Merida. 33. F. Nerling, J. Bluemer, R. Engel, M. Risse, Astropart. Phys. 24, 421 (2006). 34. M. Unger, B.R. Dawson, R. Engel, F. Schssler, R. Ulrich, Nucl. Instrum. Methods A 588, 433 (2008). 35. T. Gaisser, A. Hillas, Proc. 15th ICRC, Plovdiv 8, 353 (1977). 36. H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit, Astropart. Phys. 22, 159 (2004). 37. F. Sanchèz, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807. 38. I.C. Maris, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809. 39. H.J. Mathes, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807. 40. J. Rautenberg [Pierre Auger Collaboration], Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2358. 41. S.Y. BenZvi et al., Nucl. Instrum. Methods Phys. Res. A 574, 171 (2007). 42. B. Fick et al., JINST) 1, 11003 (2006). 43. D. Heck et al., “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers”, Report FZKA, 6019 (1998). 44. S. Ostapchenko, Phys. Lett. B 636, 40 (2006). 45. N.N. Kalmykov, S. Ostapchenko, Sov. J. Nucl. Phys. 50, 315 (1989). 46. T. Pierog, K. Werner, Phys. Rev. Lett. 101, 171101 (2008). 47. A. Fass`o et al., CERN-2005-10 (2005) INFN/TC 05/11, SLAC-R-773. 48. B. Keilhauer et al., Astropart. Phys. 22, 249 (2004). 49. J. Linsley, private communication by M. Hillas (1988). 50. S. Argirò et al., Nucl. Instrum. Methods Phys. Res. A 580, 1485 (2007). 51. L. Prado et al., Nucl. Instrum. Methods A 545, 632 (2005). 52. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003) IEEE Trans. Nucl. Sci. 53, 270 (2006). 53. The Pierre Auger Collaboration, Astropart. Phys. 35, 266 (2011). 54. M. Settimo for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4805. 55. The Pierre Auger Collaboration, Astropart. Phys. 29, 243 (2008). 56. T. Bergmann et al., Astropart. Phys. 26, 420 (2007). 57. K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006). 58. K. Kamata, J. Nishimura, Prog. Theoret. Phys. Suppl. 6, 93 (1958). 59. K. Greisen, Prog. Cosmic Rays Phys. III, 26 (1965). 60. C. Di Giulio, for the Pierre Auger Collaboration, Proceedings of 31st Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2189. 61. E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 80, 094003 (2009). 62. M. Nagano, K. Kobayakawa, N. Sakaki, K. Ando, Astropart. Phys. 20, 293 (2003). 63. A. Castellina, for the Pierre Auger Collaboration, Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2319. 64. R. Pesce, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809.
Collections