Publication:
A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

Research Projects
Organizational Units
Journal Issue
Abstract
Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
Description
© 2012 IOP Publishing Ltd and Sissa Medialab srl We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MEB111003, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO
UCM subjects
Keywords
Citation
[1] J. Linsley, Evidence for a primary cosmic-ray particle with energy 1020 eV, Phys. Rev. Lett. 10 (1963) 146 [INSPIRE]. [2] K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [INSPIRE]. [3] G. Zatsepin and V. Kuzmin, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [INSPIRE]. [4] HiRes collaboration, R. Abbasi et al., First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett. 100 (2008) 101101 [astro-ph/0703099] [INSPIRE]. [5] Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the flux of cosmic rays above 4 × 1019eV, Phys. Rev. Lett. 101 (2008) 061101 [arXiv:0806.4302] [INSPIRE]. [6] P. Tinyakov and I. Tkachev, BL Lacertae are sources of the observed ultrahigh-energy cosmic rays, JETP Lett. 74 (2001) 445 [astro-ph/0102476] [INSPIRE]. [7] D. Gorbunov, P. Tinyakov, I. Tkachev and S.V. Troitsky, Evidence for a connection between gamma-ray and highest energy cosmic ray emissions by BL Lacs, Astrophys. J. 577 (2002) L93 [astro-ph/0204360] [INSPIRE]. [8] T. Stanev, P.L. Biermann, J. Lloyd-Evans, J.P. Rachen and A.A. Watson, The arrival directions of the most energetic cosmic rays, Phys. Rev. Lett. 75 (1995) 3056 [astro-ph/9505093] [INSPIRE]. [9] Y. Uchihori et al., Cluster analysis of extremely high-energy cosmic rays in the northern sky, Astropart. Phys. 13 (2000) 151 [astro-ph/9908193] [INSPIRE]. [10] P. Tinyakov and I. Tkachev, Correlation function of ultrahigh energy cosmic rays favors point sources, JETP Lett. 74 (2001) 1 [astro-ph/0102101] [INSPIRE]. [11] M. Takeda et al., Small-scale anisotropy of cosmic rays above 1019 ev observed with the Akeno giant air shower array, Astrophys. J. 522 (1999) 225 [astro-ph/9902239] [INSPIRE]. [12] HiRes collaboration, R. Abbasi et al., Search for Correlations between HiRes Stereo Events and Active Galactic Nuclei, Astropart. Phys. 30 (2008) 175 [arXiv:0804.0382] [INSPIRE] [13] HiRes collaboration, R.U. Abbasi et al., Search for point-like sources of cosmic rays with energies above 1018.5 eV in the HiRes. 1. Monocular data-set, Astropart. Phys. 27 (2007) 512 [astro-ph/0507663] [INSPIRE]. [14] S. Westerhoff for the HiRes collaboration, Search for small-scale anisotropy of cosmic rays above 1019 eV with HiRes stereo, Nucl. Phys. Proc. Suppl. 136C (2004) 46 [astro-ph/0408343] [INSPIRE]. [15] R. Abbassi for the HiRes collaboration, A Search for Three and Four Point Correlation in HiRes Stereo Data, arXiv:0901.3740 [INSPIRE]. [16] Pierre Auger collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50 [INSPIRE]. [17] M.-P. Veron-Cetty and P. Veron, A catalogue of quasars and active nuclei: 12th edition, Astron. Astrophys. 455 (2006) 773 [INSPIRE]. [18] Pierre Auger collaboration, J. Abraham et al., Correlation of the highest energy cosmic rays with nearby extragalactic objects, Science 318 (2007) 938 [arXiv:0711.2256] [INSPIRE]. [19] Pierre Auger collaboration, J. Abraham et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei, Astropart. Phys. 29 (2008) 188 [Erratum ibid. 30 (2008) 45] [arXiv:0712.2843] [INSPIRE]. [20] Pierre Auger collaboration, P. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys. 34 (2010) 314 [arXiv:1009.1855] [INSPIRE]. [21] P.J.E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press, Princeton U.S.A. (1980). [22] J. Hague, B. Becker, M. Gold and J. Matthews, A Three-Point Cosmic Ray Anisotropy Method, J. Phys. G 36 (2009) 115203 [arXiv:0905.4488] [INSPIRE]. [23] M. Ave, et al., The 2pt+: an enhanced 2 point correlation function, JCAP 07 (2009) 023 [arXiv:0905.2192] [INSPIRE]. [24] N.H. Woodcock, Specification of fabric shapes using an eigenvalue method, Geol. Soc. Am. Bull. 88 (1977) 1231. [25] N.H. Woodcock and M.A. Naylor, Randomness testing in three-dimensional orientation data, J. Struct. Geol. 5 (1983) 539. [26] A. Berlind, N. Busca, G. Farrar and J. Roberts, Mock Catalogs for UHECR Studies, arXiv:1112.4188 [INSPIRE]. [27] McBride et al., in preparation (2012), see http://lss.phy.vanderbilt.edu/lasdamas/ for full details. [28] D. Ryu, H. Kang, J. Cho and S. Das, Turbulence and Magnetic Fields in the Large Scale Structure of the Universe, Science 320 (2008) 909 [arXiv:0805.2466] [INSPIRE]. [29] C. Bonifazi for the Pierre Auger collaboration, The angular resolution of the Pierre Auger Observatory, Nucl. Phys. Proc. Suppl. 190 (2009) 20 [arXiv:0901.3138] [INSPIRE]. [30] Pierre Auger collaboration, P. Abreu et al., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, arXiv:1107.4809 [INSPIRE].
Collections