Publication:
Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.
Description
© 2012 Elsevier B.V. All rights reserved. Artículo firmado por más de 10 autores (Pierre Auger Observatory). We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta de Andalucia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0969400, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.
UCM subjects
Keywords
Citation
[1] J. Abraham, et al. Properties and performance of the prototype instrument for the Pierre Auger ObservatoryNucl. Instrum. Methods, A523 (2004), pp. 50–95 [2] J. Abraham, et al. The fluorescence detector of the Pierre Auger Observatory Nucl. Instrum. Methods, A620 (2010), pp. 227–251 http://dx.doi.org/10.1016/j.nima.2010.04.023 <arxiv:0907.4282> [3] J. Abraham, et al. A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory APh, 33 (2010), pp. 108–129 [4] J. Abraham, et al. Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory APh, 32 (2009), pp. 89–99 [5] K. Louedec, The Pierre Auger Collaboration, Atmospheric monitoring at the pierre auger observatory – status and update, in: Proc. 32nd ICRC, Beijing, China, 2011. [6] B. Keilhauer, The Pierre Auger Collaboration The balloon-the-shower programme of the Pierre Auger Observatory Astrophys. Space Sci. Trans., 6 (2010), pp. 27–30 [7] F. Arqueros, J. Hörandel, B. Keilhauer Air fluorescence relevant for cosmic-ray detection – summary of the 5th fluorescence workshop, El Escorial 2007 Nucl. Instrum. Methods, A597 (2008), pp. 1–22 [8] M. Ave, et al. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY Nucl. Instrum. Methods, A597 (2008), pp. 50–54 [9] M. Boháčová, The AIRFLY Collaboration, Temperature and humidity dependence of air fluorescence yield, in: 6th Air Fluorescence Workshop, L’Aquila, Italy, 2009. [10] M. Nagano, et al. New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays APh, 22 (2004), pp. 235–248 [11] J.C. Owens, et al. Temperature and composition Appl. Opt., 6 (1967), pp. 51–59 [12] P.E. Ciddor, et al. Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials Appl. Opt., 41 (2002), pp. 2292–2298 [13] K. Birch, M. Downs An updated Edlén equation for the refractive index of air Metrologia, 30 (1993), pp. 155–162 [14] C. Tomasi, et al. Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres Appl. Opt., 44 (2005), pp. 3320–3341 [15] B. Keilhauer et al., The Pierre Auger Collaboration, Rapid atmospheric monitoring after the detection of high-energy showers at the Pierre Auger Observatory, in: Proc. 31st ICRC, Łódź, Poland, 2009 . [16] P. Müller, H. von Storch Computer Modeling in Atmospheric and Oceanic Sciences Springer Verlag (2004) [17] W. Wergen Datenassimilation – ein Überblick Promet, 27 (3/4) (2002), pp. 142–149 (in German) [18] NOAA Air Resources Laboratory (ARL), Global Data Assimilation System (GDAS1) Archive Information, Tech. rep., <http://ready.arl.noaa.gov/gdas1.php>, 2004. [19] National Aeronautics and Space Administration (NASA), US Standard Atmosphere 1976, NASA-TM-X-74335, 1976. [20] National Centers for Environmental Prediction (NCEP), GFS/G DAS Changes Since 1991, Tech. rep., 2010. [21] B. Stunder, NOAA Air Resources Laboratory, private communication, 2011. [22] M. Mahoney, A Discussion of Various Measures of Altitude, Tech. rep., <http://mtp.mjmahoney.net/www/notes/altitude/altitude.html>2008. [23] B. Bodhaine, et al. On Rayleigh optical depth calculations J. Atmos. Ocean. Tech., 16 (1999), pp. 1854–1861 [24] S. Argirò, et al. The offline software framework of the Pierre Auger Observatory Nucl. Instrum. Methods, A580 (2007), pp. 1485–1496 [25] M. Ave, The AIRFLY Collaboration, et al. Measurement of the pressure dependence of air fluorescence emission induced by electrons APh, 28 (2007), pp. 41–57 [26] R. Pesce et al., The Pierre Auger Collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, in: Proc. 32nd ICRC, Beijing, China, 2011, . [27] B. Keilhauer, J. Blümer, R. Engel, H. Klages Altitude dependence of fluorescence light emission by extensive air showers Nucl. Instrum. Methods, A597 (2008), pp. 99–104 [28] T. Bergmann, et al. One-dimensional hybrid approach to extensive air shower simulation APh, 26 (2007), pp. 420–432 [29] S. Ostapchenko QGSJET-II: towards reliable description of very high energy hadronic interactions Nucl. Phys. Proc. Suppl., 151 (2006), pp. 143–146 [30] B. Keilhauer, M. Unger, Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions, in: Proc. 31st ICRC, Łódź, Poland, 2009.
Collections