Publication:
Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-06-03
Authors
Fytas, Nikolaos G.
Picco, Marco
Sourlas, Nicolas
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
By performing a high-statistics simulation of the D = 4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.
Description
© 2016 American Physical Society. Our L=52, 60 lattices were simulated in the MareNostrum and Picasso supercomputers (we thankfully acknowledge the computer resources and assistance provided by the staff at the Red Española de Supercomputación). N. G. F. was supported by Royal Society Research Grant No. RG140201 and from a Research Collaboration Fellowship Scheme of Coventry University. V. M.-M. was supported by MINECO (Spain) through research Contract No. FIS2012-35719C02-01.
Unesco subjects
Keywords
Citation
1. Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975). 2. G. Parisi, Field Theory, Disorder and Simulations (World Scientific, Singapore, 1994). 3. T. Nattermann, in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998). 4. D. P. Belanger, in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998). 5. N. G. Fytas and V. Martín-Mayor, arXiv:1512.06571. 6. S. Franz, G. Parisi, and F. Ricci-Tersenghi, J. Stat. Mech. (2013) L02001. 7. S. Franz and G. Parisi, J. Stat. Mech. (2013) P11012. 8. G. Biroli, C. Cammarota, G. Tarjus, and M. Tarzia, Phys. Rev. Lett. 112, 175701 (2014). 9. K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974). 10. J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984). 11. J. Bricmont and A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987). 12. M. Aizenman and J. Wehr, Commun. Math. Phys. 130, 489 (1990). 13. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975). 14. A. Aharony, Phys. Rev. B 18, 3318 (1978). 15. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979). 16. G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981). 17. A. P. Young, J. Phys. C 10, L257 (1977). 18. See Refs. [2, 19, 20, 21] for possible sources of nonperturbative behavior. 19. M. Mézard and A. P. Young, Europhys. Lett. 18, 653 (1992). 20. M. Mézard and R. Monasson, Phys. Rev. B 50, 7199 (1994). 21. G. Parisi and N. Sourlas, Phys. Rev. Lett. 89, 257204 (2002). 22. J. Villain, J. Phys. (Paris) 46, 1843 (1985). 23. A. J. Bray and M. A. Moore, J. Phys. C 18, L927 (1985). 24. D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986). 25. For T>0, C(con)xy=⟨SxSy⟩−⟨Sx⟩⟨Sy⟩¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯/T, hence the name connected propagator. 26. Z. Slanič, D. P. Belanger, and J. A. Fernandez-Baca, Phys. Rev. Lett. 82, 426 (1999). 27. F. Ye, M. Matsuda, S. Katano, H. Yoshizawa, D. Belanger, E. Seppälä, J. Fernandez-Baca, and M. Alava, J. Magn. Magn. Mater. 272–276, Part 2, 1298 (2004);Proceedings of the International Conference on Magnetism (ICM, Rome, 2003). 28. M. Schwartz and A. Soffer, Phys. Rev. B 33, 2059 (1986). 29. M. Schwartz, M. Gofman, and T. Natterman, Physica (Amsterdam) 178A, 6 (1991). 30. M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwartz, Phys. Rev. Lett. 71, 1569 (1993). 31. M. Tissier and G. Tarjus, Phys. Rev. Lett. 107, 041601 (2011). 32. M. Tissier and G. Tarjus, Phys. Rev. B 85, 104203 (2012). 33. G. Tarjus, I. Balog, and M. Tissier, Europhys. Lett. 103, 61001 (2013). 34. J.-C. Anglès d’Auriac, M. Preissmann, and R. Rammal, J. Phys. Lett. 46, 173 (1985). 35. A. V. Goldberg and R. E. Tarjan, J. Assoc. Comput. Mach. 35, 921 (1988). 36. A. T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986). 37. J.-C. Anglès d’Auriac and N. Sourlas, Europhys. Lett. 39, 473 (1997). 38. M. R. Swift, A. J. Bray, A. Maritan, M. Cieplak, and J. R. Banavar, Europhys. Lett. 38, 273 (1997). 39. N. Sourlas, Comput. Phys. Commun. 121–122, 183 (1999); Proceedings of the Europhysics Conference on Computational Physics (CCP, Granada, 1998). 40. A. K. Hartmann and U. Nowak, Eur. Phys. J. B 7, 105 (1999). 41. A. A. Middleton, Phys. Rev. Lett. 88, 017202 (2001). 42. A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 214419 (2001). 43. A. A. Middleton and D. S. Fisher, Phys. Rev. B 65, 134411 (2002). 44. I. Dukovski and J. Machta, Phys. Rev. B 67, 014413 (2003). 45. Y. Wu and J. Machta, Phys. Rev. Lett. 95, 137208 (2005). 46. Y. Wu and J. Machta, Phys. Rev. B 74, 064418 (2006). 47. N. G. Fytas and V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013). 48. M. Picco and N. Sourlas, J. Stat. Mech. (2014) P03019. 49. A. K. Hartmann, Phys. Rev. B 65, 174427 (2002). 50. A. A. Middleton, arXiv:cond-mat/0208182. 51. B. Ahrens and A. K. Hartmann, Phys. Rev. B 83, 014205 (2011). 52. M. Picco and N. Sourlas, Europhys. Lett. 109, 37001 (2015). 53. On the other hand, 0≤2η−η¯ is valid for all D [30]. 54. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.116.227201 for the parameters of the simulations; evidence for subleading corrections to scaling; χ2 for combined fits; details on the extrapolation to L=∞ for ξ(dis)/L, U4 and ν. 55. D. J. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore, 2005). 56. M. Nightingale, Physica (Amsterdam) 83A, 561 (1976). 57. H. G. Ballesteros, L. A. Fernandez, V. Martín-Mayor, and A. Muñoz Sudupe, Phys. Lett. B 378, 207 (1996). 58. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B58, 2740 (1998).
Collections