Publication:
Haematite natural crystals: non-linear initial susceptibility at low temperature

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.
Description
© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. This work is supported by Project no CGL2011-24790 from Spanish Ministry of Economy and Competitiveness and Visiting Research Fellowships of Institute for Rock Magnetism (IRM, University of Minnesota, USA) to SGS. We thank to Dr. Dario Bilardello and Prof. Mike Jackson from IRM for fruitful suggestions and technical assistance during the stay of SGS in the IRM. To Dr. Dekkers who kindly provided the hematite grain-sizes fractions. The manuscript has benefited from comments of two anonymous reviewers and we also acknowledge comments and suggestiosn of editor Proffesor A. Biggin.
Unesco subjects
Keywords
Citation
Bertotti G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. Academic press; 1998. Bhowmik R., Saravanan A. Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. J. appl. Phys. 2010;107(5):053916. doi:10.1063/1.3327433. Borradaile G.J., Jackson M. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. Geol. Soc. Lond. Spec. Publ. 2004;238(1):299-360. Bozorth R.M. Ferromagnetism. Richard M. Bozorth, editor. Vol. 1. Wiley-VCH; 1993. p. 992. Butler R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes. Vol. 319. Blackwell Scientific Publications; 1992. Christensen P., et al. Detection of crystalline hematite mineralization on mars by the thermal emission spectrometer: evidence for near-surface water. J. geophys. Res. 2000;105(E4):9623-9642. Christensen P., Morris R., Lane M., Bandfield J., Malin M. Global mapping of martian hematite mineral deposits: remnants of water-driven processes on early mars. J. geophys. Res. 2001;106(E10):23 873-23 885. Church N., Feinberg J.M., Harrison R. Low-temperature domain wall pinning in titanomagnetite: quantitative modeling of multidomain first-order reversal curve diagrams and ac susceptibility. Geochem. Geophys. Geosyst. 2011;12:Q07Z27. doi:10.1029/2011GC003538. Coey J.D. Magnetic materials. J. Alloys Compd. 2001;326(1):2-6. Coey J.M. Magnetism and Magnetic Materials. Cambridge Univ. Press; 2010. Day R., Fuller M., Schmidt V. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth planet. Inter. 1977;13(4):260-267. de Boer C.B., Dekkers M.J. Unusual thermomagnetic behaviour of haematites: neoformation of a highly magnetic spinel phase on heating in air. Geophys. J. Int. 2001;144(2):481-494. de Boer C.B., Mullender T.A., Dekkers M.J. Low-temperature behaviour of haematite: susceptibility and magnetization increase on cycling through the morin transition. Geophys. J. Int. 2001;146(1):201-216. de Wall H., Worm H.-U. Field dependence of magnetic anisotropy in pyrrhotite: effects of texture and grain shape. Phys. Earth planet. Inter. 1993;76(1):137-149. Dekkers M.J. Some rockmagnetic parameters for natural goethite, pyrrhotite and fine-grained hematite. Geol. Ultraiectina 1988;51:1-249. Dunlop D.J. Magnetic properties of fine particles hematite. Ann. Geophys. 1971;27:269-293. Dunlop D.J., Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers. Cambridge Univ. Press; 2001. Vol. 3. Dunlop D., Özdemir Ö. Treatise on Geophysics. Vol. 5. 2007. Magnetizations in rocks and minerals. p. 277-336. Elsevier. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958;4(4):241-255. Fuller M. Experimental methods in rock magnetism and paleomagnetism. Methods Exp. Phys. 1987;24:303-471. Guerrero-Suarez S., Martín-Hernández F. Magnetic anisotropy of hematite natural crystals: increasing low-field strength experiments. Int. J. Earth Sci. 2012;101(3):625-636. Halgedahl S., Fuller M. The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo-single-domain behavior. J. geophys. Res. 1983;88(B8):6505-6522. Harrison R., Redfern S. Short-and long-range ordering in the ilmenite–hematite solid solution. Phys. Chem. Miner. 2001;28(6):399-412. Harstra R.L. PhD thesis. State University of Utrecht; 1982. Some rock magnetic parameters for natural iron-titanium oxides. p. 145. Hrouda F. Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys. J. Int. 2002;150(3):715-723. Hrouda F. Anisotropy of magnetic susceptibility of rocks in the rayleigh law region: modelling errors arising from linear fit to non-linear data. Stud. Geophys. Geod. 2007;51(3):423-438. Hrouda F. Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard ams measurement in variable low fields. I: Theory. Tectonophysics 2009;466(1):114-122. Hrouda F. The Earth's Magnetic Interior. Springer; 2011. Anisotropy of magnetic susceptibility in variable low-fields: a review. p. 281-292. pp. Hrouda F., Ježek J. Frequency-dependent ams of rocks: a tool for the investigation of the fabric of ultrafine magnetic particles. Tectonophysics 2014;629:27-38. Hrouda F., Chlupáčová M., Mrázová Š. Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks. Phys. Earth planet. Inter. 2006;154(3):323-336. Ishikawa Y., Saito N., Arai M., Watanabe Y., Takei H. A new oxide spin glass system of (1 − x)Fe2TiO3−xFe2O3. I. Magnetic properties. J. Phys. Soc. Japan 1985;54(1):312-325. Jackson M., Moskowitz B., Rosenbaum J., Kissel C. Field-dependence of AC susceptibility in titanomagnetites. Earth planet. Sci. Lett. 1998;157(3):129-139. Kaye G. The effect of titanium on the low temperature transition in natural crystals of haematite. Proc. Phys. Soc. 1962;80(1):238. Kletetschka G., Wasilewski P.J., Taylor P.T. Hematite vs. magnetite as the signature for planetary magnetic anomalies? Phys. Earth planet. Inter. 2000a;119(3):259-267. Kletetschka G., Wasilewski P.J., Taylor P.T. Mineralogy of the sources for magnetic anomalies on mars. Meteorit. Planet. Sci. 2000b;35(5):895-899. Kletetschka G., Ness N.F., Connerney J., Acuna M., Wasilewski P. Grain size dependent potential for self generation of magnetic anomalies on mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite. Phys. Earth planet. Inter. 2005;148(2):149-156. Luna C., Vega V., Prida V.M., Mendoza-Reséndez R. Morin transition in hematite nanocrystals self-assembled into three-dimensional structures. J. Nanosci. Nanotechnol. 2012;12(9):7571-7576. Martin-Hernandez F., Guerrero-Suárez S. Magnetic anisotropy of hematite natural crystals: high field experiments. Int. J. Earth Sci. 2012;101(3):637-647. Martin-Hernandez F., Hirt A.M. Evidence for weak ferromagnetic moment within the basal plane of hematite natural crystals at low temperature. Geochem. Geophys. Geosyst. 2013;14(10):4444-4457. Martín-Hernández F., Dekkers M., Bominaar-Silkens I., Maan J. Magnetic anisotropy behaviour of pyrrhotite as determined by low-and high-field experiments. Geophys. J. Int. 2008;174(1):42-54. Menyeh A., O'Reilly W. The coercive force of fine particles of monoclinic pyrrhotite (Fe7S8) studied at elevated temperature. Phys. Earth planet. Inter. 1995;89(1):51-62. Morin F. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 1950;78(6):819. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960;120(1):91. Morrish A.H. Canted Antiferromagnetism: Hematite. World Scientific; 1994. Néel L. Some new results on antiferromagnetism and ferromagnetism. Rev. Mod. Phys. 1953;25(1):58, 63. Özdemir Ö., Dunlop D.J. Thermoremanent magnetization of multidomain hematite. J. geophys. Res. 2005;110:B09104. doi:10.1029/2005JB003820. Özdemir Ö., Dunlop D.J. Magnetic memory and coupling between spin-canted and defect magnetism in hematite. J. geophys. Res. 2006;111:B12S03. doi:10.1029/2006JB004555. Özdemir Ö., Dunlop D.J., Berquo T.S. Morin transition in hematite: size dependence and thermal hysteresis. Geochem. Geophys. Geosyst. 2008;9:Q10Z01. doi:10.1029/2008GC002110. Özdemir Ö., Dunlop D.J., Jackson M. Frequency and field dependent susceptibility of magnetite at low temperature. Earth Planets Space 2009;61(1):125-131. Peters C., Dekkers M. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth A/B/C 2003;28(16):659-667. Pokornỳ J., Suza P., Hrouda F. Anisotropy of magnetic susceptibility of rocks measured in variable weak magnetic fields using the KLY-4S Kappabridge. Geol. Soc. Lond. Spec. Publ. 2004;238(1):69-76. Pokornỳ J., Suza P., Pokornỳ P., Chlupáčová M., Hrouda F. Widening power of low-field magnetic methods in the investigation of rocks and environmental materials using the Multi-function Kappabridge Set. Geophys. Res. Abstr 2006;8:04141. Song T., Roshko R., Dahlberg E.D. Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach. J. Phys.: Condens. Matter 2001;13(14):3443-3460. Tadić M., Marković D., Spasojević V., Kusigerski V., Remškar M., Pirnat J., Jagličić Z. Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix. J. Alloys Compd. 2007;441(1):291-296. Tarling D., Hrouda F. Magnetic Anisotropy of Rocks. Springer Science & Business Media; 1993. Urbach J., Madison R., Markert J. Reproducible noise in a macroscopic system: magnetic avalanches in perminvar. 1995. arXiv:adap-org/9508005. Worm H.-U. Multidomain susceptibility and anomalously strong low field dependence of induced magnetization in pyrrhotite. Phys. Earth planet. Inter. 1991;69(1):112-118. Worm H.-U., Clark D., Dekkers M. Magnetic susceptibility of pyrrhotite: grain size, field and frequency dependence. Geophys. J. Int. 1993;114(1):127-137.
Collections