Publication:
Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-10-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.
Description
En acceso abierto en la web del editor (comprobado en julio 2016). Received 20 Jun 2012; revised 23 Jul 2012; accepted 23 Jul 2012; published 3 Oct 2012.
Keywords
Citation
1. P. S. Carney, B. Deutsch, A. A. Govyadinov, and R. Hillenbrand, “Phase in nanooptics,” ACS Nano 6, 8 - 12 (2012). 2. G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the Optical Near Field of Nanoantennas with Spatial Phase-Shaped Beams,” Nano Lett. 9 3608-3611 (2009). 3. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express 20, 11986-11993 (2012). 4. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic Laser Antennas and Related Devices,” J. Sel. T. Q. Elec. 14, 1448-1461 (2008). 5. L. Novotny, and N. Van Hulst, “Antennas for light,” Nature Phot. 5, 83-90 (2011). 6. J. Alda, J. M. Rico-García, J. M. Lopez-Alonso, and G. D. Boreman, “Optical antennas for nanophotonics applications,” Nanotechnology 16, S230, (2005). 7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antenna,” Science 332, 702-704, (2011). 8. R. L. Olmon, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: A near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010). 9. C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubhl, and H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37-46 (1999). 10. J. Alda, C. Fumeaux, L. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two dimensional spatial response mapping of lithographic infrared antennas,” Appl. Opt. 38 3993-4000 (1999). 11. J. M. Lopez-Alonso, B. Monacelli, J. Alda, and G. D. Boreman, “Uncertainty analysis in the measurement of the spatial responsivity of infrared antennas,” Appl. Opt. 44, 4557-4568 (2005). 12. R. W. Gerchberg, and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237-246 (1972). 13. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). 14. J. Miao, D. Sayre, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662-1669 (1998). 15. W. Chen, and X. Chen, “Quantitative phase retrieval of complex-valued specimens based on noninterferometric imaging,” Appl. Opt. 50, 2008-2015 (2011). 16. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. H. Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High resolution ab initio three-dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179-1200(2006). 17. H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, “Diffractive imaging of highly focused x-ray fields,” Nature Phys. 2, 101-104 (2006). 18. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16, 1971-1974 (1977). 19. S. Quabis, R. Dorn, M. Eberler and O. Glockl, and G. Leuchs “The focus of light - theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109-113 (2001). 20. J. M. Rico-García, L. M. Sanchez-Brea, and J. Alda, “Application of tomographic techniques to the spatial-response mapping of antenna-coupled detectors in the visible,” Appl. Opt. 47, 768-775 (2008). 21. P. Marchenko, S. Orlov, C. Huber, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Interaction of highly focused vector beams with a metal knife-edge,” Opt. Express 19, 7244-7249 (2011). 22. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434-1441 (1983). 23. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402-1403 (1990). 24. T. E. Gureyev, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13(8), 1670-1682 (1996). 25. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). 26. J. Alda, J. Alonso, and E. Bernabeu, “Characterization of aberrated laser beams,” J. Opt. Soc. Am. A 14, 2737-2747 (1997). 27. S. Barbero, and L. N. Thibos, “Error analysis and correction in wavefront reconstruction from the transport-ofintensity equation,” Opt. Eng. 45, 094001 (2006). 28. M. Soto, E. Acosta, and S. Rios “Performance analysis of curvature sensors: optimum positioning of measurement planes,” Opt. Express 11, 2577-2588 (2003). 29. P. Toft, “The Radon transform: theory and implementation,” Ph. D. dissertation (Technical University of Denmark, (1996), http://petertoft.dk/PhD. 30. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, (Gatesmark Publishing 2008). 31. M. Born, and E. Wolf, Principles of Optics, (Pergamon Press, 1980). 32. G. M. Dai, “Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation,” Opt. Lett. 31, 501-503 (2006). 33. S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter “Fast optical computerized topography,” Phys. Lett. A 374, 2798-2800 (2006). 34. J. Alda, “Laser and Gaussian beam propagation and transformation,” in Encyclopedia of Optical Engineering (Marcel Dekker Inc. 2003), 999-1013. 35. J. M. Braat, S. Van Haver, A. E. M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point spread functions,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), 349-468.
Collections