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I. INTRODUCTION

Unimodular gravity (UG) is a truncation of general
relativity (GR) in the sense that only unimodular metrics
(i.e. those with unit determinant) are considered. A recent
review is [1], where some early references can be found. It
is remarkable that Einstein himself proposed a closely
related theory in 1919 [2].
The theory can be (and it is technically convenient)

formulated in such a way that it has an added Weyl
invariance by writing

ĝμν ≡ ðTUgÞμν ≡ jgj−1
ngμν; ð1Þ

(where g≡ det gαβ). The reason is that then the variations
δgαβ are unconstrained, whereas the variations of the
unimodular metric have got to be traceless:

ĝαβδĝαβ ¼ 0: ð2Þ

We shall denote the mapping,

UR∶ gμν → ĝαβ; ð3Þ

as “unimodular reduction.” It is not invertible, since there is
noway to reconstruct gαβ from its unimodular reduction ĝαβ.
On the other hand, oncewe restrict the theory to unimodular
metrics, the ensuing theory (UG) is not invariant under the
full diffeomorphism group of the manifold DiffðMÞ, but
only under the subgroup that preserves the unimodularity
condition, which we have dubbed TDiffðMÞ. This is
essentially what mathematicians call the volume preserving
subgroup [3]. It has been pointed out that this symmetry is
enough to kill the three unwanted polarizations when
defining the massless theory from a massive theory in flat
space [4]. At any rate, under unimodular reduction Einstein-
Hilbert action gets transformed into

UR∶ SGR ≡ −Mn−2
P

Z
dnx

ffiffiffiffiffi
jgj

p
R½gαβ� →

→ SUG ≡ −Mn−2
P

Z
dnxR½ĝαβ�; ð4Þ

and the unimodular action in terms of unconstrained
variables reads

SUG ¼ −Mn−2
P

Z
dnxjgj1n

�
Rþ ðn − 1Þðn − 2Þ

4n2
∂μg∂μg

g2

�
:

ð5Þ
Once here, one can never go back to the Einstein frame

as this action is Weyl invariant.
In terms of this unconstrained metric, the equations

of motion (EM) are given by the manifestly traceless
expression [5]

Rμν −
1

n
Rgμν ¼ Θμν

Θμν ≡ ðn − 2Þð2n − 1Þ
4n2

�∂μg∂νg

g2
−
1

n
ð∂gÞ2
g2

gμν

�

−
n − 2

2n

�∂μ∂νg − Γλ
μν∂λg

g

−
1

n
gαβ

∂α∂βg − Γλ
αβ∂λg

g
gμν

�
: ð6Þ

The explicit presence of the determinant of the metric, g,
clearly indicates the EM are not Diff invariant.
Now given the fact that the EM are Weyl invariant, we

can always transform from gμν to ḡμν such that

ḡ ¼ 1; ð7Þ
where the EM simply read

R̄μν ¼
1

n
R̄ḡμν: ð8Þ

The solutions of these equations are, by definition, Einstein
spaces [6]. The Bianchi identities in the absence of torsion
do imply then ∂μR ¼ 0.
Given a unimodular Einstein space, ḡμν, all its Weyl

rescalings,
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gμν ≡Ω2ðxÞḡμν; ð9Þ

are also solutions of the equations [(6)]. They span a Weyl
orbit of solutions. In four dimensions, it is well known that
the necessary and sufficient condition [7] for a space to be
conformally Einstein is for it to be Bach flat,

Bμν ≡∇α∇βWαμνβ −
1

2
RαβWαμνβ ¼ 0; ð10Þ

where Wμνρσ is the Weyl tensor. We are not aware of a
similar statement in arbitrary dimension.
The full symmetry group of this action is quite

large though, incorporating Weyl transformations of the
metric. This means that, in the process of the unimodular
reduction of the Einstein-Hilbert action, the symmetry
group changes, namely,

UR∶ DiffðMÞ → TDiffðMÞ ⋉ WeylðMÞ: ð11Þ

Let us examine this process of symmetry reduction in more
detail. We shall be cavalier about domains of definition of
the transformations, and all of our reasoning will be
purely local.

II. TDIFF INVARIANCE OF THE
UNIMODULAR ACTION

It is not immediately obvious in which reference systems
the EM [3] are valid.
Let us first start with the analysis of the already

mentioned change of the symmetry group in the process
of unimodular reduction.
We can represent a linearized element of Diff0ðMÞ (the

subgroup of DiffðMÞ connected with the identity) as

x → x0 ≡ xþ ξ: ð12Þ

The corresponding Jacobian matrix is

Jαβ0 ðxÞ≡
∂xα
∂xβ0 ; ð13Þ

and its determinant will be denoted by the letter J.
The determinant of the metric then transforms as

gðxÞ → gξðxþ ξÞ ¼ J2ðxÞgðxÞ: ð14Þ

And for the case of a volume-preserving diffeomor-
phism, it is transverse in the sense that

∂λξ
λ
T ¼ 0; ð15Þ

and the Jacobian matrix is itself unimodular,

JT ¼ 1: ð16Þ

Let us examine what happens with the action of
TDiff0 ⋉ WeylðMÞ. Clearly,

gξμνðxÞ≡ JαμJ
β
νgαβðx − ξÞ; ð17Þ

and, consequently,

gξΩμν ≡Ω2ðxÞJαμJβνgαβðx − ξÞ: ð18Þ

On the other hand, the other way around,

gΩξμν ðxÞ ¼ Ω2ðx − ξÞJαμJβνgαβðx − ξÞ: ð19Þ

This corresponds to the noncommutativity of the diagram,

ð20Þ

which is why the symmetry group is a semidirect product.
We can move now to answer the question of the validity

of the EM of UG.
The two possible paths when going from GR to UG are

shown in the following diagram:

ð21Þ

The rightmost path corresponds to, first perform a Diff

gξμνðxÞ≡ ðTξgÞμνðxÞ≡ Jαμðx − ξÞJννðx − ξÞgαβðx − ξÞ
ð22Þ

and unimodularly reduce afterwards. The corresponding
unimodular metric is then

ðTUTξgÞμνðxÞ ¼ J−
2
nðxÞg−1

nðxÞðTξgÞμν: ð23Þ

Let us now perform an arbitrary diffeomorphism after
unimodular reduction (corresponding to the left path in the
diagram). The result is

ðTξTUgÞαβðxÞ ¼ J−
2
nðx − ξÞg−1

nðx − ξÞðTξgÞαβ: ð24Þ

This means again that the diagram above is not
commutative.
Indeed, we find it particularly clarifying to examine what

happens in this latter case.
If we perform a Diff in (6), the determinant gðxÞ

transforms as
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∂λ0gξðx0Þ ¼ Jαλ0∂αðJ2ðxÞgðxÞÞ
¼ Jαλ0 ðJ2∂αgðxÞ þ 2gðxÞJðxÞ∂αJÞ; ð25Þ

which conveys the fact that the first monomial in the EM transforms as

∂μ0gξðx0Þ∂ν0gξðx0Þ
g0ðx0Þ2 ¼ Jαμ0J

β
ν0

J4g2
ð∂αgJ2 þ 2gJ∂αJÞðJ2∂βgþ 2gJ∂βJÞ

¼ Jαμ0J
β
ν0

�∂αg∂βg

g2
þ 2

∂αJ∂βgþ ∂αg∂βJ

Jg
þ 4

∂αJ∂βJ

J2

�
; ð26Þ

and its trace, which is the one subtracted from it in (6), is just
�∂αg

g
þ 2

∂αJ
J

�
2

: ð27Þ

The second monomial transforms, in turn, as

∂μ0∂ν0gξðxþ ξÞ
gξðxþ ξÞ ¼ Jρμ0J

α
ν0∂ρ

J2g
ðJ2∂αgðxÞ þ 2gðxÞJðxÞ∂αJÞ

¼ Jρμ0J
α
ν0

�
2
∂ρJ

J
∂αg
g

þ ∂ρ∂αg

g
þ 2

∂ρg

g
∂αJ
J

þ 2
∂αJ
J

∂ρJ

J
þ 2

∂ρ∂αJ

J

�
; ð28Þ

with its trace now

4
∂αJ∂αg
gJ

þ ∂2g
g

þ 2
∂αJ∂αJ

J2
þ 2

∂2J
J

ð29Þ

III. CONCLUSIONS

When performing a general Diff0ðMÞ transformation in
the unimodular EM, the extra terms generated are

EM½gξμν�α0β0

¼ Jαα0J
β
β0

�
EM½gμν�αβ þ

n − 2

2n

�
1

n

∂αJ∂βgþ ∂αg∂βJ

Jg

þ 2
1 − n
n

∂αJ∂βJ

J2
þ 2

∂α∂βJ

J

�

−
n − 2

n2

�
1

n

∂μJ∂μg

gJ
þ 1 − n

n

∂μJ∂μJ

J2
þ ∂2J

J

�
gαβ

�
:

ð30Þ
To be specific, the fact that a given metric gμν is a solution

of the unimodular equations of motion does not imply that it
remains a solution after an arbitrary diffeomorphism
ξ ∈ Diff0ðMÞ unless, of course, this happens to be trans-
verse, ξ ∈ TDiff0ðMÞ. Certainly, there is no problem with
performing the Diff before the unimodular reduction, since
GR is invariant as shown in the last diagram.
In other words, the assertion that a given metric is a

solution of the UG equations of motion is not Diff(M)
invariant, but only TDiffðMÞ ⋉ WeylðMÞ invariant. Is there
a coordinate system which is not attainable through a

symmetry transformation? By the following argument, one
might think that there is none. An arbitrary diffeomorphism
acts as

gξμνðxÞ≡ JαμJ
β
νgαβðx − ξÞ; ð31Þ

which has the same number of parameters as the action of a
volume-preserving diffeomorphism composed with a Weyl
transformation. However, there is a subtlety here, since one
should have solutions to the equation,

Jαμ
J

¼ ∂yα
∂xμ ; ð32Þ

and this is possible only when

∂ν

�
Jαμ
J

�
¼ ∂μ

�
Jαν
J

�
; ð33Þ

which will not, in general, be true.
In the Appendix, we work out a simple example to

illustrate this fact.
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APPENDIX A: ANY METRIC CAN BE MADE
UNIMODULAR BY A DIFFEOMORHISM

All we have to do is to find a solution of the equation

JðxÞ ¼ 1

gðxÞ2 : ðA1Þ

At the linear level (algebra),

∂μξ
μ ¼ 1

gðxÞ2 − 1; ðA2Þ

and this is trivially solved in a formal way by

ξμðxÞ ¼ ∂μ□−1
�

1

gðxÞ2 − 1

�
; ðA3Þ

whose solution is unique under essentially the same
conditions as the corresponding solution of the wave
equation [8].

APPENDIX B: FLAT SPACE IN CYLINDRICAL
COORDINATES IS NOT A SOLUTION OF UG

Let us consider, to be specific, the ordinary three-
dimensional Euclidean space R3 in cylindrical coordinates:

ds2 ¼ dr2 þ r2dθ2 þ dz2: ðB1Þ

A simple calculation, taking into account that

Γr
ϕϕ ¼ −r

Γϕ
ϕr ¼

1

r
; ðB2Þ

yields

Θμν ¼
1

27r2

0
B@

−7 0 0

0 8r2 0

0 0 −1

1
CA ≠ 0: ðB3Þ

That is, flat space in cylindrical coordinates is not a
solution of the unimodular equations of motion. This
happens, of course, because the transformation from
Cartesian to cylindrical coordinates does not belong to
TDiffðR3Þ. In terms of the integrability conditions (33), it is
clear that there is no integrating factor because the Jacobian
from Cartesian coordinates reads

Jαμ ≡
0
B@

cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

1
CA; ðB4Þ

its determinant is

J ¼ r; ðB5Þ

and the integrability conditions fail here because, for
example,

∂
∂θ

�
Jxr
J

�
¼ −

cos θ
r2

≠
∂
∂r

�
Jxθ
J

�
¼ 0: ðB6Þ
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