Publication:
Coulomb dissociation of N-20,N-21

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-06-30
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N-19(n,gamma)N-20 and N-20(n,gamma)N-21 excitation functions and thermonuclear reaction rates have been determined. The N-19(n,gamma)N-20 rate is up to a factor of 5 higher at T < 1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
Description
©2016 American Physical Society. Artículo publicado por más de 10 autores. This work was supported in part by GSI (F&E, DR-ZUBE), Bundesministerium fur Bildung und Forschung (BMBF) (06DR134I, 05P09CRFN5, 05P12RDFN8, and 05P15RDFN1), the Hemholtz Association Germany through the Nuclear Astrophysics Virtual Institute (NAVI, Grant No. VH-VI-417), the Helmholtz Association Detector Technology and Systems Platform, the Spanish Research funding agency under projects FPA2012-32443, FPA2013-41267-P, and FPA2013-47831-C2-1-P, the Swedish Research Council, HIC for FAIR and the TU Darmstadt-GSI cooperation contract, the Portuguese FCT project PTDC/FIS/103902/2008, UK STFC under grants ST/E500651/1 and ST/F011989/1, US NSF Grant No. 1415656, and US DOE Grant No. DE-FG02-08ER41533.
Keywords
Citation
1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957). 2. K. Takahashi, J. Witti, and H.-T. Janka, Astron. Astrophys. 286, 857 (1994). 3. T. Sasaqui, T. Kajino, G. J. Mathews, K. Otsuki, and T. Nakamura, Astrophys. J. 634, 1173 (2005). 4. R. Reifarth, C. Lederer, and F. Käppeler, J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014). 5. M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews, and I. Tanihata, Astrophys. J. 562, 470 (2001). 6. G. Baur, C. Bertulani, and H. Rebel, Nucl. Phys. A 458, 188 (1986). 7. S. G. Altstadt, T. Adachi, Y. Aksyutina, J. Alcantara, H. Alvarez-Pol et al., Nucl. Data Sheets 120, 197 (2014). 8. C. Caesar, J. Simonis, T. Adachi, Y. Aksyutina, J. Alcantara et al. (R3B Collaboration), Phys. Rev. C 88, 034313 (2013). 9. M. Heine, S. Typel, M.-R. Wu, T. Adachi, Y. Aksyutina et al., arXiv:1604.05832. 10. R. Thies, A. Heinz, T. Adachi, Y. Aksyutina, J. Alcantara-Núñes et al. (R3B Collaboration), Phys. Rev. C 93, 054601 (2016). 11. H. Geissel, P. Armbruster, K. H. Behr, A. Brünle, K. Burkard et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992). 12. J. Alcaraz, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston et al., Nucl. Instrum. Methods Phys. Res., Sect. A 593, 376 (2008). 13. V. Metag, R. Fischer, W. Kühn, R. Mühlhans, R. Novotny et al., Nucl. Phys. A 409, 331 (1983). 14. J. Cub, G. Stengel, A. Grünschloß, K. Boretzky, T. Aumann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 402, 67 (1998). 15. K. Mahata, H. Johansson, S. Paschalis, H. Simon, and T. Aumann, Nucl. Instrum. Methods Phys. Res., Sect. A 608, 331 (2009). 16. T. Blaich, T. Elze, H. Emling, H. Freiesleben, K. Grimm et al., Nucl. Instrum. Methods Phys. Res., Sect. A 314, 136 (1992). 17. K. Boretzky, A. Grünschloß, S. Ilievski, P. Adrich, T. Aumann et al. (LAND Collaboration), Phys. Rev. C 68, 024317 (2003). 18. D. Sohler, M. Stanoiu, Z. Dombrádi, F. Azaiez, B. A. Brown et al., Phys. Rev. C 77, 044303 (2008). 19. G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003), the 2003 NUBASE and Atomic Mass Evaluations. 20. M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick et al., Chin. Phys. C 36, 1603 (2012). 21. S. Typel and G. Baur, Phys. Rev. C 64, 024601 (2001). 22. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye et al., Nucl. Phys. A 656, 3 (1999). 23. C. Rolfs and W. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics, Theoretical Astrophysics series (University of Chicago Press, Chicago, 1988). 24. A. L. Sallaska, C. Iliadis, A. E. Champange, S. Goriely, S. Starrfield et al., Astrophys. J. Suppl. Ser. 207, 18 (2013). 25. T. Rauscher, J. H. Applegate, J. J. Cowan, F.-K. Thielemann, and M. Wiescher, Astrophys. J. 429, 499 (1994). 26. B. Meyer, PoS (NIC XII), 096 (2012). 27. R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith et al., Astrophys. J. Suppl. Ser. 189, 240 (2010). 28. B. S. Meyer, Phys. Rev. Lett. 89, 231101 (2002). 29. F. Käppeler, H. Beer, and K. Wisshak, Rep. Prog. Phys. 52, 945 (1989). 30. R. Reifarth, S. Altstadt, K. Göbel, T. Heftrich, M. Heil et al., J. Phys. Conf. Ser. 665, 012044 (2016).
Collections