Publication:
The impact of the air-fluorescence yield on the reconstructed shower parameters of ultra-high energy cosmic rays.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-01
Authors
Monasor, M.
Vázquez Peñas, José Ramón
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluorescence technique. In this work, several sets of fluorescence yield data (i.e. absolute value and quenching parameters) are described and compared. A simple procedure to study the effect of the assumed fluorescence yield on the reconstructed shower parameters (energy and shower maximum depth) as a function of the primary features has been developed. As an application, the effect of water vapor and temperature dependence of the collisional cross section on the fluorescence yield and its impact on the reconstruction of primary energy and shower maximum depth has been studied. Published by Elsevier B.V.
Description
© 2011 Elsevier Science BV . This work has been supported by the Spanish Ministerio de Ciencia e Innovacion (FPA2009-07772 and CONSOLIDER CPAN CSD2007-42) and "Comunidad de Madrid" (Ref.: 910600). Monasor acknowledges the "Consejeria de Educacion y Ciencia de Castilla-La Mancha" and the "Fondo Social Europeo" for a postdoctoral fellowship. Very fruitful discussion with our colleagues of the Auger collaboration are acknowledged, in particular with B. Keilhauer, J. Matthews, V.H. Ponce and M. Unger.
UCM subjects
Keywords
Citation
[1] M. Monasor et al., The impact of the fluorescence yield on the reconstructed shower parameters of ultra-high energy cosmic rays, in: Proceedings of the 31st ICRC, Lodz, Poland, 2009. [2] B. Keilhauer, M. Unger, Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions, in: Proceedings of the 31st ICRC, Lodz, Poland, 2009. [3] F. Arqueros et al., in: Proceedings of the 5th Fluorescence Workshop, El Escorial, Madrid, Nucl. Instrum. Methods A 597 (2008) 1. [4] J. Rosado et al., Astropart. Phys. 34 (2010) 164. [5] T. Waldenmaier et al., Astropart. Phys. 29 (2008) 205. [6] M. Ave et al., AIRFLY Collaboration, in: Proceedings of th 5th Fluorescence Workshop, El Escorial, Madrid, Nucl. Instrum. Methods A 597 (2008) 50. [7] D.L. Holtermann et al., J. Chem. Phys. 77 (1982) 5327. [8] F. Arqueros et al., in: Proceedings of th 5th Fluorescence Workshop, El Escorial, Madrid, Nucl. Instrum. Methods A 597 (2008) 23. [9] B. Dawson, Private Communication. [10] F. Kakimoto et al., Nucl. Instrum. Methods A 372 (1996) 527. [11] A.N. Bunner, Cosmic Ray Detection by Atmospheric Fluorescence, Ph.D. Thesis, Cornell University, Ithaca, NY, 1967. [12] M. Nagano et al., Astropart. Phys. 22 (2004) 235. [13] F. Arqueros et al., in: 43rd Rencontres de Moriond: Electroweak Interactions and Unified Theories, La Thuile, Italy, 2008. Available from: <arXiv:0807.4824>. F. Arqueros et al., New J. Phys. 11 (2009) 065011. [14] M. Nagano, New J. Phys. 11 (2009) 065012. [15] M. Ave et al., AIRFLY Collaboration, Astropart. Phys. 28 (2007) 41. [16] J. Abraham et al., Pierre Auger Collaboration, Phys. Lett. B 685 (2010) 239. [17] J. Abraham et al., Pierre Auger Collaboration, Nucl. Instrum. Methods A 620 (2010) 227. [18] J. Abraham et al., Pierre Auger Collaboration, Astropart. Phys. 33 (2010) 108. [19] B. Keilhauer et al., in: Proceedings of the 5th Fluorescence Workshop, El Escorial, Madrid, Nucl. Instrum. Methods A 597 (2008) 99. [20] T. Gaisser, G. Hillas, in: Proceedings of the 15th International Cosmic Ray Conference, Plovdiv, vol. 8, 1977, p. 353. [21] C. Song et al., Astropart. Phys. 14 (2000) 7. [22] L. Perrone, S. Petrera, F. Salamida, Private Communication. [23] C. Song, Astropart. Phys. 22 (2004) 151. [24] F. Schüssler, M. Unger, Private Communication. [25] M. Unger et al., Nucl. Instrum. Methods A588 (2008) 433.
Collections