Publication:
The exposure of the hybrid detector of the Pierre Auger Observatory.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction. (C) 2010 Elsevier B.V. All rights reserved.
Description
© 2010 Elsevier B.V. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por más de 10 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministerodell'Istruzione, dell'Universita e della Ricerca(MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta de Andalucia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.
UCM subjects
Keywords
Citation
[1] J. Abraham, The Pierre Auger Collaboration, et al. Properties and performance of the prototype instrument for the Pierre Auger Observatory Nucl. Instrum. Meth., 523 (1–2) (2004), pp. 50–95 [2] I. Allekotte, et al. The surface detector system of the Pierre Auger Observatory Nucl. Instrum. Meth., A586 (2008), p. 409 [3] J. Abraham, The Pierre Auger Collaboration, et al. The fluorescence detector of the Pierre Auger Observatory Nucl. Instrum. Meth., A620 (2010), p. 227 [astro-ph.IM] [4] J. Abraham, The Pierre Auger Collaboration, et al. Trigger and aperture of the surface detector array of the Pierre Auger Observatory Nucl. Instrum. Meth. A, A613 (2010), pp. 29–39 [astro-ph] [5] B. Dawson, The Pierre Auger Collaboration, Hybrid Performance of the Pierre Auger Observatory, ICRC 2007, Merida, 2007. [astro-ph]. [6] C. Di Giulio, The Pierre Auger Collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory, in: Proceedings of the 31st International Cosmic Ray Conference (Lodz, Poland), 2009. <0906.2189>[astro-ph]. [7] J. Abraham, The Pierre Auger Collaboration, et al. Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory Phys. Lett. B, 685 (2010), pp. 239–246 [8] J. Abraham, The Pierre Auger Collaboration, et al. Observation of the suppression of the flux of cosmic rays above 4 1019 eV Phys. Rev. Lett., 101 (2008), p. 061101 [9] C. Bonifazi, The Pierre Auger Collaboration The angular resolution of the Pierre Auger Observatory Nucl. Phys. Proc. Suppl., 190 (2009), pp. 20–25 [10] M. Mostafà, et al. Hybrid activities of the Pierre Auger Observatory Nucl. Phys. Proc. Suppl., 165 (2007), p. 50 [11] M. Unger, B.R. Dawson, R. Engel, F. Schussler, R. Ulrich Reconstruction of longitudinal profiles of ultra-high energy cosmic ray showers from fluorescence and Cherenkov light measurements Nucl. Instrum. Meth., A588 (2008), pp. 433–441 [12] T. Gaisser, A. Hillas, in: Proceedings of the 15th ICRC 8, 1977, p. 353. [13] H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit Indirect determination of the missing energy content in extensive air showers Astropart. Phys., 22 (2004), pp. 159–166 [14] N.N. Kalmykov On application of logarithmic normal distribution to the analysis of experimental data on extensive air showers Yad. Fiz., 10 (1969), pp. 121–129 [15] W. Carvalho Jr., I.F.M. Albuquerque, V. de Souza Effects of the energy error distribution of fluorescence telescopes on the UHECR energy spectrum Astropart. Phys., 28 (2007), pp. 89–97 [16] J. Abraham, The Pierre Auger Collaboration, et al. Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV Phys. Rev. Lett., 101 (2008), p. 061101 [17] E. Parizot, et al., The Pierre Auger Collaboration, Aperture calculation of the Pierre Auger Observatory surface detector, in: 29th International Cosmic Ray Conference, 2005. . [18] B. Fick, et al. The Central Laser Facility at the Pierre Auger Observatory J. Instrum. (JINST), 1 (2006), p. 11003 [19] D. Heck, et al., Forschungszentrum Karlsruhe FZKA-6019, 1998. [20] N. Kalmykov, et al. Quark-gluon-string model and EAS simulation problems at ultra-high energies Nucl. Phys. B (Proc. Suppl.), 53 (1997), pp. 17–28 [21] S. Ostapchenko QGSJET-II: results for extensive air showers Nucl. Phys. B (Proc. Suppl.), 151 (2006), p. 143 [22] A. Fassò, et al., LUKA: a multi-particle transport code, CERN-2005-10, INFN/TC_05/11, SLAC-R-773, 2006. [23] L. Prado, et al. Simulation of the fluorescence detector of the Pierre Auger Observatory Nucl. Instrum. Meth., A545 (2005), p. 632 [24] S. Agostinelli, et al. Geant4 – a simulation toolkit Nucl. Instrum. Meth. A, 506 (2003), p. 250 [25] S. Argirò, et al. The offline software framework of the Pierre Auger Observatory Nucl. Instrum. Meth. A, 580 (2007) [26] The Pierre Auger Collaboration, The Lateral Trigger Probability function for UHE Showers detected by the Pierre Auger Observatory, paper in preparation. [27] T. Bergmann, et al. One-dimensional hybrid approach to extensive air shower simulation Astropart. Phys., 26 (2007), pp. 420–432 [28] T. Pierog, et al., Latest Results from the Air Shower Simulation Programs CORSIKA and CONEX, in: Proceedings of the 30th International Cosmic Ray Conference, 2007. [29] K. Kamata, J. Nishimura The lateral and the angular structure functions of electron showers Prog. Theoret. Phys. Suppl., 6 (1958), p. 93 [30] K. Greisen Prog. Cosmic Rays Phys., III (1965), p. 26 [31] S. Sciutto, et al., AIRES, a system for air shower simulation. . [32] E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari, T. Stanev Cosmic ray interaction event generator SIBYLL 2.1 Phys. Rev. D, 80 (2009), p. 094003 [33] J. Abraham, The Pierre Auger Collaboration, et al. A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory Astropart. Phys., 33 (2010), p. 108 [astro-ph] [34] S. BenZvi, et al. The Lidar system of the Pierre Auger Observatory Nuclear Instrum. Meth., A574 (2007), p. 171 [35] G. Cowan Statistical Data Analysis Oxford Science Publications (1998) [36] P.A. Collaboration, Hybrid exposure of the Pierre Auger Observatory. Corresponding author at: Karlsruhe Institute of Technology, Campus North, Institut für Kernphysik, Karlsruhe, Germany.
Collections