Publication:
Deposition of Intrinsic a-Si:H by ECR-CVD to Passivate the Crystalline Silicon Heterointerface in HIT Solar Cells

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics and Engineers (IEEE)
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.
Description
© 2016 IEEE. This work was supported in part by the Project MADRID-PV (under Grant 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish Ministerio de Economía y Competitividad (MINECO) under Grant TEC 2013-41730-R and Grant TEC2016-75099-R, and by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM–Banco Santander) under Grant 910173-2014. The work of D. Montero was supported by the Spanish MINECO under Contract BES-2014-067585.
Unesco subjects
Keywords
Citation
1. K. Masuko "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell". IEEE J. Photovoltaics, vol. 4 no. 6 pp. 1433-1435 Nov. 2014. 2. J. Zhao A. Wang M. A. Green and F. Ferrazza "Novel 19.8% efficient ‘‘honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells". Appl. Phys. Lett., vol. 73 pp. 1991 1998. 3. T. Mishima M. Taguchi H. Sakata and E. Maruyama "Development status of high-efficiency HIT solar cells". Sol. Energy Mater. Sol. Cells, vol. 95 pp. 18-21 2011. 4. S. DeWolf A. Descoeudres Z. C. Holman and C. Ballif "High-efficiency silicon heterojunction solar cells: A review". Green, vol. 2 pp. 7-24 2012. 5. A. J. Flewitt and W. I. Milne "Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays". Proc. IEEE, vol. 93 no. 7 pp. 1364-1373 Jul. 2005. 6. E. Redondo I. Mártil G. González-Díaz H. Castán and S. Dueñas " Influence of electron cyclotron resonance nitrogen plasma exposure on the electrical characteristics of SiN x :H/InP structures ". J. Vac. Sci. Technol. B, vol. 19 pp. 186 2001. 7. T. Hirao "Hydrogen concentration and bond configurations in silicon nitride films prepared by ECR plasma CVD method". Jpn. J. Appl., vol. 27 pp. 30 1988. 8. A. del Prado " The influence of H on the composition and atomic concentration of “N-rich” plasma deposited SiO x N y H z films ". J. Appl. Phys., vol. 95 pp. 5373 2004. 9. S. Bae A. K. Kalkan S. Cheng and S. J. Fonash " Characteristics of amorphous and polycrystalline silicon films deposited at \$120 ^{circ}{text{C}}\$ by electron cyclotron resonance plasma-enhanced chemical vapor deposition ". J. Vac. Sci. Technol. A, vol. 16 pp. 1912 1998. 10. R. Rashid A. J. Flewitt and J. Robertson " Physical and electrical properties of low temperature (< \$100 ^{circ}{text{C}}\$ ) SiO films deposited by electron cyclotron resonance plasmas ". J. Vac. Sci. Technol. A, vol. 21 pp. 728 2003. 11. T. H. Chang "Investigation of the amorphous to microcrystalline phase transition of thin film prepared by electron cyclotron resonance chemical vapor deposition method". Surface Coatings Technol., vol. 231 pp. 604-607 2013. 12. E. V. Johnson L. Kroely and P. Roca I Cabarrocas "Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics". Sol. Energy Mater. Sol. Cells, vol. 93 pp. 1904-1906 2009. 13. L. Korte A. Laades and M. Schmidt "Electronic states in a-Si:H/c-Si heterostructures". J. Non-Cryst. Solids, vol. 352 pp. 1217-1220 2006. 14. M. Garín U. Rau W. Brendle I. Martín and R. Alcubilla "Characterization of a-Si: H/ c-Si interfaces by effective-lifetime measurements". J. Appl. Phys., vol. 98 2005. 15. A. A. Langford M. L. Fleet B. P. Nelson W. A. Lanford and N. Maley "Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon". Phys. Rev. B, vol. 45 1992. 16. J. L. Hernandez Rojas "Optical analysis of absorbing thin films: Applications to ternary chalcopyrite semiconductors". Appl. Opt., vol. 31 pp. 1606-1611 1992. 17. K. Morigaki Physics of Amorphous Semiconductors 1999 World Scientific. 18. E. H. Nicollian and J. R. Brews MOS (Metal Oxide Semiconductor) Physics and Technology 2002 Wiley. 19. A. H. Mahan L. M. Gedvilas and J. D. Webb "Si-H bonding in low hydrogen content a-Si:H hot wire chemical vapor deposited films as probed by infrared spectroscopy". J. Appl. Phys., vol. 87 pp. 1650 2000. 20. M. H. Brodsky M. Cardona and J. J. Cuomo "Infrared and Raman-spectra of silicon-hydrogenated bonds in amorphous silicon prepared by glow-discharge and sputtering". Phys. Rev. B, vol. 16 pp. 3556 1977. 21. N. Maley "Critical investigation of the infrared-transmission-data analysis" vol. 46 pp. 2078 1992. 22. H Meddeb "Structural hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (1 0 0) silicon surfaces". J. Phys. D: Appl. Phys., vol. 48 2015. 23. I. Hanyecz J. Budai E. Szilágyi and Z. Tóth " Ellipsometric study of Si x C films: Analysis of Tauc–Lorentz and Gaussian oscillator models ". Thin Solid Films, vol. 519 pp. 2855-2858 2011. 24. S. C. Saha S. Ghosh and S. Ray "Widegap a-Si:H films prepared at low substrate temperature". Sol. Energy Mater. Sol. Cells, vol. 45 pp. 115-126 1997. 25. T. Schutz-Kuchly and A. Slaoui "Double layer a-Si:H/SiN:H deposited at low temperature for the passivation of N-type silicon". Appl. Phys. A, vol. 112 pp. 863 2013. 26. B. Sopori "A comprehensive model of hydrogen transport into a solar cell during silicon nitride processing for fire-through metallization". Proc. 31st IEEE Photovoltaic Spec. Conf., pp. 1039-1042 2005. 27. D. K. Schroeder Semiconductor Material and Device Characterization pp. 347-350 2006 Wiley. 28. K. Fukuda S. Suzuki T. Tanaka and K. Arai "Reduction of interface-state density in 4 H–SiC n-type metal–oxide–semiconductor structures using high-temperature hydrogen annealing". Appl. Phys. Lett., vol. 76 pp. 1585 2000. 29. P. C. Feijoo M. A. Pampillón E. San Andrés and M. L. Lucía "Optimization of scandium oxide growth by high pressure sputtering on silicon". Thin Solid Films, vol. 526 pp. 81-86 2012. 30. R. Engel-Herbert Y. Hwang and S. Stemmer "Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces". J. Appl. Phys., vol. 108 2010. 31. T. F. Schulze "Interplay of amorphous silicon disorder and hydrogen content with interface defects". Appl. Phys. Lett., vol. 96 2010.
Collections