Publication:
Measurement of picosecond lifetimes in neutron-rich Xe isotopes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-09-03
Authors
Mach, H.
Paziy, V.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of U-235 and Pu-241, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even Xe-138,Xe-140,Xe-142 isotopes lying between the double shell closure N = 82 and Z = 50 and a deformed region with octupole collectivity. Method: The gamma rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N = 82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N = 90.
Description
©2016 American Physical Society. Artículo firmado por más de 10 autores. This work is supported by NuPNET and the German ministry of education and research (BMBF) under Grants No. 05P12RDCIA, No. 05P12RDNUP, and No. 05P12PKNUF; by ILL; and by HIC for FAIR. Also supported by the UK Science and Technology Facilities Council and the UK National Measurement Office. The authors appreciate the support of several services at ILL and LPSC.
UCM subjects
Keywords
Citation
[1] Th. Kröll et al., AIP Conf. Proc. 1012, 84 (2008). [2] A. Lindroth, B. Fogelberg, H. Mach, M. Sanchez-Vega, and J. Bielčík, Phys. Rev. Lett. 82, 4783 (1999). [3] W. Urban et al., Eur. Phys. J. A 16, 303 (2003). [4] R. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1998). [5] W. Nazarewicz and S. L. Tabor, Phys. Rev. C 45, 2226 (1992). [6] P. A. Butler andW. Nazarewicz, Nucl. Phys. A533, 249 (1991). [7] B. Bucher, S. Zhu, C. Y. Wu, R. V. F. Janssens, D. Cline, A. B. Hayes, M. Albers, A. D. Ayangeakaa, P. A. Butler, C. M. Campbell, M. P. Carpenter, C. J. Chiara, J. A. Clark, H. L. Crawford,M. Cromaz, H. M. David, C. Dickerson, E. T. Gregor, J. Harker, C. R. Hoffman, B. P. Kay, F. G. Kondev, A. Korichi, T. Lauritsen, A. O.Macchiavelli, R. C. Pardo, A. Richard, M. A. Riley, G. Savard, M. Scheck, D. Seweryniak, M. K. Smith, R. Vondrasek, and A. Wiens, Phys. Rev. Lett. 116, 112503 (2016). [8] D. Neidherr, R. B. Cakirli, G. Audi, D. Beck, K. Blaum, C. Bohm, M. Breitenfeldt, R. F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, M. Rosenbusch, S. Schwarz, and L. Schweikhard, Phys. Rev. C 80, 044323 (2009). [9] E. Cheifetz, H. A. Selic, A. Wolf, R. Chechik, and J. B. Wilhelmy, in Proc. Conf. Nucl. Spectr. Fission Products, 1980 (1980) p. 193, http://www.nndc.bnl.gov/nsr/nsrlink.jsp?1980ChZM. [10] I. Ahmad and W. R. Phillips, Rep. Prog. Phys. 58, 1415 (1995). [11] W. Andrejtscheff, M. Senba, N. Tsoupas, and Z. Z. Ding, Nucl. Instr. Methods 204, 123 (1982). [12] A. Dewald, O.M¨oller, and P. Petkov, Prog. Part. Nucl. Phys. 67, 786 (2012). [13] W. Urban et al., J. Instrum. 8, P03014 (2013). [14] J.-M. R´egis, G. S. Simpson et al., Nucl. Instr. Methods A 763, 210 (2014). [15] N. Saed-Samii, Diploma thesis, Universit¨at zu K¨oln, Institut für Kernphysik, 2013. [16] J.-M. Régis et al., Nucl. Instr. Methods A 726, 191 (2013). [17] Z. Bay, Phys. Rev. 77, 419 (1950). [18] J.-M. R´egis et al., Nucl. Instr. Methods A 622, 83 (2010). [19] J.-M. R´egis, N. Saed-Samii et al., Nucl. Instr. Methods A 823, 72 (2016). [20] J.-M. R´egis et al., Nucl. Instr. Methods A 811, 42 (2016). [21] T. R. England and B. F. Rider, Los Alamos National Laboratory report LA-UR-94-3106, ENDF (1994). [22] National nuclear data center, Accessed: August 23, 2016. [23] L. Y. Jia, H. Zhang, and Y. M. Zhao, Phys. Rev. C 75, 034307 (2007). [24] A. Gargano (private communication). [25] N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, J. Phys. Conf. Ser. 49, 178 (2006). [26] D. Bianco,N. Lo Iudice, F. Andreozzi,A. Porrino, and F.Knapp, Phys. Rev. C 88, 024303 (2013). [27] B. F. Bayman, A. Covello, A. Gargano, P. Guazzoni, and L. Zetta, Phys. Rev. C 90, 044322 (2014). [28] W. Urban, K. Sieja, T. Rzaca-Urban, M. Czerwinski, H. Naidja, F. Nowacki, A. G. Smith, and I. Ahmad, Phys. Rev. C 93, 034326 (2016). [29] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001). [30] D. C. Radford, C. Baktash, J. R. Beene, B. Fuentes, A. Galindo-Uribarri, C. J. Gross, P. A. Hausladen, T. A. Lewis, P. E. Mueller, E. Padilla, D. Shapira, D.W. Stracener, C. H. Yu, C. J. Barton, M. A. Caprio, L. Coraggio, A. Covello, A. Gargano, D. J. Hartley, and N. V. Zamfir, Phys. Rev. Lett. 88, 222501 (2002). [31] C. Goodin, J. R. Stone,N. J. Stone,A.V. Ramayya,A.V. Daniel, J. H. Hamilton, K. Li, J. K. Hwang, G. M. Ter-Akopian, and J. O. Rasmussen, Phys. Rev. C 79, 034316 (2009).
Collections