Publication:
Southern Hemisphere Summer Mesopause Responses to El Niño-Southern Oscillation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-09-01
Authors
Li, Tao
Yue, Jia
Russell, James M., III
Smith, Anne K.
Mlynczak, Martin G.
Chandran, Amal
Dou, Xiankang
Liu, Alan Z.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Nino strengthens the Brewer-Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at similar to 25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.
Description
© 2016 American Meteorological Society. TL would like to thank Han-Li Liu and Chengyun Yang for helpful discussion. TL and XD are supported by the National Natural Science Foundation of China Grants 41225017 and 41421063 and the National Basic Research Program of China Grant 2012CB825605. TL's visit to ERAU is partially supported by the NSF Grants AGS-1115249 and AGS-1110199. NC acknowledges partial support from the Spanish Ministry of Economy and Competitiveness through the PALEOSTRAT project (Paleomodelización desde una perspectiva estratoférica; Ref. CGL2015-69699-R) and the European Project 603557-STRATOCLIM under program FP7-ENV.2013.6.1-2. JY is supported by the NASA AIM and TIMED satellite missions. JMR is supported under NASA SABER Grant NNX15AD22G. MGM is supported by the NASA TIMED satellite project. AZL is supported by National Science Foundation Grants AGS-1115249 and AGS-1110199. The WACCM 3.5 results were obtained from the Atmospheric Chemistry Division at the National Center for Atmospheric Research. The radiosonde dataset is downloaded from http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html. We want to thank Bodil Karlsson and two other anonymous reviewers for their constructive comments on this paper.
Unesco subjects
Keywords
Citation
Andrews, D., and M. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048, doi:10.1175/1520-0469(1976)033,2031:PWIHAV.2.0.CO;2. Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 937–30 946, doi:10.1029/1999JD900445. Becker, E., A. Müllemann, F. J. Lübken, H. Körnich, P. Hoffmann, and M. Rapp, 2004: High Rossby-wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys. Res. Lett., 31, L24S03, doi:10.1029/2004GL019615. Benze, S., C. E. Randall, B. Karlsson, V. L. Harvey, M. T. DeLand, G. E. Thomas, and E. P. Shettle, 2012: On the onset of polar mesospheric cloud seasons as observed by SBUV. J. Geophys. Res., 117, D07104, doi:10.1029/2011JD017350. Calvo, N., M. A. Giorgetta, R. García Herrera, and E. Manzini, 2009: Non-linearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445. ——, R. García, W. Randel, and D. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 2331–2340, doi:10.1175/2010JAS3433.1. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828. Espy, P. J., S. O. Fernández, P. Forkman, D. Murtagh, and J. Stegman, 2011: The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures. Atmos. Chem. Phys., 11, 495–502, doi:10.5194/acp-11-495-2011. García Herrera, R., N. Calvo, R. García, and M. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061. Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920. Gumbel, J., and B. Karlsson, 2011: Intra- and inter-hemispheric coupling effects on the polar summer mesosphere. Geophys. Res. Lett., 38, L14804, doi:10.1029/2011GL047968. Hardiman, S. C., N. Butchart, P. H. Haynes, and S. H. E. Hare, 2007: A note on forced versus internal variability of the stratosphere. Geophys. Res. Lett., 34, L12803, doi:10.1029/2007GL029726. Hervig, M. E., M. H. Stevens, L. L. Gordley, L. E. Deaver, J. M. Russell III, and S. M. Bailey, 2009: Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations. J. Geophys. Res., 114, D20203, doi:10.1029/2009JD012302. Karlsson, B., C. McLandress, and T. G. Shepherd, 2009: Interhemispheric mesospheric coupling in a comprehensive middle atmosphere model. J. Atmos. Sol.-Terr. Phys., 71, 518–530, doi:10.1016/j.jastp.2008.08.006. ——, and Coauthors, 2011: On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere. J. Geophys. Res., 116, D18107, doi:10.1029/2011JD015989. Körnich, H., and E. Becker, 2010: A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv. Space Res., 45, 661–668, doi:10.1016/j.asr.2009.11.001. Li, T., T. Leblanc, and I. S. McDermid, 2008: Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.58N, 155.68W). J. Geophys. Res., 113, D14109, doi:10.1029/2007JD009764. ——, N. Calvo, J. Yue, X. Dou, J. M. Russell, M. G. Mlynczak, C.-Y. She, and X. Xue, 2013: Influence of El Niño–Southern Oscillation in the mesosphere. Geophys. Res. Lett., 40, 3292–3296, doi:10.1002/grl.50598. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 3863–3881, doi:10.1175/JCLI3826.1. Murphy, D. J., S. P. Alexander, and R. A. Vincent, 2012: Interhemispheric dynamical coupling to the southern mesosphere and lower thermosphere. J. Geophys. Res., 117, D08114, doi:10.1029/2011JD016865. Pedatella, N.M., and H.-L. Liu, 2013: Influence of the El Niño Southern Oscillation on the middle and upper atmosphere. J. Geophys. Res. Space Phys., 118, 2744–2755, doi:10.1002/jgra.50286. Randel, W. J., R. R. García, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343. Rong, P. P., J. M. Russell III, C. E. Randall, S. M. Bailey, and A. Lambert, 2014: Northern PMC brightness zonal variability and its correlation with temperature and water vapor. J. Geophys. Res. Atmos., 119, 2390–2408, doi:10.1002/2013JD020513. Russell, J. M., M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, 1999: Overview of the SABER experiment and preliminary calibration results. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3756), 277–288, doi:10.1117/12.366382. Sassi, F., D. Kinnison, B. Boville, R. Garcia, and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434. Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, doi:10.1029/2007JD008783. Siskind, D. E., M. H. Stevens, M. Hervig, F. Sassi, K. Hoppel, C. R. Englert, and A. J. Kochenash, 2011: Consequences of recent Southern Hemisphere winter variability on polar mesospheric clouds. J. Atmos. Sol. Terr. Phys., 73, 2013–2021, doi:10.1016/j.jastp.2011.06.014. Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 1751–1762, doi:10.1175/1520-0469(1993)050,1751:ROTESQ.2.0.CO;2. Yulaeva, E., and J. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 1719–1736, doi:10.1175/1520-0442(1994)007,1719:TSOEIG.2.0.CO;2.
Collections