Automatic Counting of Microglial Cells in Healthy and Glaucomatous Mouse Retinas



Downloads per month over past year

Gracia Pacheco, Pablo de and Gallego Collado, Beatriz Isabel and Rojas López, María Blanca and Ramírez Sebastián, Ana Isabel and Hoz Montañana, María Rosa de and Salazar Corral, Juan José and Triviño Casado, Alberto and Ramirez Sebastian, Jose Manuel (2015) Automatic Counting of Microglial Cells in Healthy and Glaucomatous Mouse Retinas. PLoS ONE, 10 (11). Article number 0143278. ISSN 1932-6203

[thumbnail of Plos 2015 Salazar.pdf]
Creative Commons Attribution.


Official URL:


Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies.

Item Type:Article
Additional Information:

Copyright: © 2015 de Gracia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Uncontrolled Keywords:Glaucoma; Glial cells; Microglial cells; Automatic counting; Image processing; Inner plexiform layer; Outer plexiform layer; Bilateral activation; Experimental glaucoma; IOP
Subjects:Medical sciences > Medicine > Ophtalmology
Medical sciences > Optics > Optometry
ID Code:39933
Deposited On:08 Nov 2016 09:18
Last Modified:08 Nov 2016 15:40

Origin of downloads

Repository Staff Only: item control page