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Periodized discrete elasticity models [1, 2, 3] are the simplest correction to linear
elasticity equations allowing for nucleation and motion of dislocations in crystals.
Two ingredients are needed to build a periodized discrete elasticity model for a
particular type of crystal. First a linear lattice model reproducing the crystal
structure and yielding the correct linear anisotropic elasticity equations in the
continuum limit has to be found. To this end, an adequate potential energy for
the crystal lattice is defined. This may be done by thinking of the crystal as
a set of balls joined by springs or by discretizing the continuous elastic energy
using the crystal lattice as a mesh. Next, the periodicity of the crystal has to be
restored, allowing atoms to change neighbors. This could be done by a nonlinear
relabelling protocol. From an analytical point of view, it is more convenient to
introduce periodic functions of discrete differences along the primitive directions
of the crystal with a period equal to the lattice constant.

These models are useful to understand nucleation and motion of dislocations
(defects supported by lines) in nanocrystals at low temperatures. In heteroepitax-
ial growth, for instance, layers of atoms of a new crystal are grown on a substrate.
After a few layers, a barrier of misfit dislocations is formed. In a different con-
text, nanoindentation tests use the tip of an electronic microscope to apply a load
on the surface of a nanocrystal. Past a critical stress, dislocations are generated
around the tip. These crystals are perfect except for a few dislocations moving
along primitive directions of the crystal. Secondary slip systems are only acti-
vated at large temperatures and high strain rates. Nanoindentation tests provide
information on the nanocrystal mechanical properties and on incipient plasticity.

Compared to standard molecular dynamics models, the mathematical structure
of periodized discrete elasticity models allows for cheaper simulations and an el-
ementary analysis. By construction, the perfect crystal is a stable equilibrium.
Pinned edge and screw dislocations are stationary solutions behaving at infinity
like singular solutions of the Navier equations [1, 4]. Moving dislocations are trav-
elling wave solutions [5]. Dislocations interact as expected. For example, if we
have a set of planar edge dislocations with parallel Burgers vectors along the x
axis, dislocations having the same sign of the Burgers vector repel each other.
Dislocations whose Burgers vectors have opposite signs attract and they either
cancel each other or form dipoles and loops. In simple geometries, a more precise
analysis can be done.

Let us consider a 2D cubic lattice for which only displacements in the x direction
are relevant. The lattice evolution is governed by the nondimensional equations:
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where ui,j represents the dimensionless displacement of the atom (i, j) in the direc-
tion x. Periodicity is only needed in the direction in which changes of neighbours
can take place. We have selected a sine function. In practice, this periodic func-
tion would have to be fitted to the material. The lattice spacing is normalized to
1. Here A = C44/C11 for a cubic crystal with elastic constants C11, C12, C44.

This simple model allows for nucleation and motion of edge dislocations along
the x direction when a shear stress of strength F is applied in the x direction.
Dislocation depinning can be characterized as a global bifurcation [6], explaining
the role of stationary and dynamic Peierls stresses [5, 7, 8]. Dislocation nucle-
ation appears as a subcritical pitchfork bifurcation, yielding the critical stress for
nucleation, the nucleation site and the nature of nucleated defects [9].

Dislocation depinning. Let us consider a lattice containing an edge dislocation.
We apply a shear stress of strength F in the x direction. Stationary dislocation
solutions are constructed by looking for stationary solutions that behave at infinity
like θ(i, j

√

A
)+Fj, θ being the angle function. For small F , the resulting solutions

take values in the region where the sine function is increasing. Existence of sta-
tionary dislocations can be proven using a maximum principle for the overdamped
version of (1) and constructing adequate sub and supersolutions [4]. Above a
threshold, the spatial operator changes type and dislocations start to move.

Two critical values of the stress are found. Below Fs, stable stationary disloca-
tion solutions exist. Above Fd, stable travelling dislocations are found. In general,
Fd < Fs. Both thresholds only agree in the overdamped limit m = 0. In this
case, a prediction of the dislocation speed is found by assembling the information
available above and below threshold. The linear stability analysis of the station-
ary dislocation solutions shows that the largest negative eigenvalue vanishes at Fs.
The corresponding bifurcation is a global saddle-node bifurcation, and the solution
can be approximated by matched asymptotic expansions in the limit as F → Fs+
(for F > Fs the dislocation moves as a traveling wave). The amplitude equation
corresponding to a saddle-node bifurcation has solutions that blow up in finite
time as F → Fs+. At the blow-up times, the solution described by the amplitude
equation has to be matched to an inner solution that solves (1) with F = Fs and
appropriate matching conditions. The profiles of the travelling dislocations are
step-like; see [1, 6] for details. A numerical calculation of the traveling wave shows
that as F approaches Fs from above, its profile develops steps, which become
steeper and steeper near Fs where the previously described approximation based
on the global bifurcation applies. The speed of the wave is related to the time
one atom spends in a step, which can be estimated using the normal form of the
bifurcation. This yields a (F − Fs)

1/2 scaling for the speed. The scaling changes
to 3/2 in the presence of spatial disorder. It would also be affected by temporal
fluctuations, if present; see [5] and references therein. When m 6= 0, predicting a
speed law requires the analysis of a bifurcation in the branch of travelling waves.

Homogeneous nucleation. Let us now analyze homogeneous nucleation of dis-
locations by shearing a dislocation-free state. When F = 0, ui,j = 0 is a stable
solution corresponding to a perfect crystal. As F is increased, we find a branch
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BR0 of stationary solutions representing sheared lattices without defects. Numer-
ical continuation indicates that this brach becomes unstable at a critical shear
stress Fn. At this point, a subcritical pitchfork bifurcation takes place. Two new
branches of stationary configurations, BR1 and BR2, appear. Both are initially
unstable, but become stable for stresses larger than F 1

n and F 2
n , respectively. BR1

represents nucleation of one dipole, which splits in two edge dislocations moving
towards the boundary of the lattice. BR2 corresponds to nucleation of two dipoles,
that split in four edge dislocations. Since F 1

n and F 2
n are smaller than Fn, nucle-

ation can occur before reaching Fn. The final pattern observed in dynamical tests
depends on the way the load is applied. If we deform a lattice at a large strain
rate, one dipole is nucleated. At low strain rates, two dipoles are observed. The
eigenfunction corresponding to the zero eigenvalue of the linear stability problem
at Fn locates the nucleation site. Nucleation starts in the region where the eigen-
function takes large values. The two different patterns correspond to perturbations
of the lattice configuration at Fn by either adding or subtracting multiples of the
eigenfunction. Dipoles split because the critical stress for nucleation is much larger
than the critical stress for edge dislocation depinning.

In an isotropic crystal, our critical stress for nucleation scales as µ
4
, comparable

to Taylor’s estimate for the theoretical strength of a crystal. The factor 1

4
depends

on our choice of periodic interaction. Though homogeneous nucleation has long
be thought to be an elastic instability at finite strength, no precise analysis of this
instability had been carried out up to now. Preliminary tests in more complex
indentation or fracture settings suggest that a similar analysis is possible.
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