Publication:
Accommodative changes produced in response to overnight orthokeratology

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Background To evaluate short-term (3 months) and long-term (3 years) accommodative changes produced by overnight orthokeratology (OK). Methods A prospective, longitudinal study on young adult subjects with low to moderate myopia was carried out. A total of 93 patients took part in the study. Out of these, 72 were enrolled into the short-term follow-up: 21 were on a control group, 26 on a Paragon CRT contact lenses group, and 25 on a Seefree contact lenses group. The other 21 patients were old CRT wearers on long-term follow-up. Accommodative function was assessed by means of negative and positive relative accommodation (NRA / PRA), monocular accommodative amplitude (MAA), accommodative lag, and monocular accommodative facility (MAF). These values were compared among the three short-term groups at the follow-up visit. The long- and short-term follow-up data was compared among the CRT groups. Results Subjective accommodative results did not suffer any statistically significant changes in any of the accommodative tests for any of the short-term groups when compared to baseline. There were no statistically significant differences between the three short-term groups at the follow-up visit. When comparing the short- and long-term groups, only the NRA showed a significant difference (p = 0.0006) among all the accommodation tests. Conclusions OK does not induce changes in the ocular accommodative function for either short-term or long-term periods.
Description
Keywords
Citation
1. Alpern M (1949) Accommodation and convergence with contact lenses. Am J Optom Arch Am Acad Optom 26:379–387 2. Robertson DM, Ogle KN, Dyer JA (1967) Influence of contact lenses on accommodation. Theoretic considerations and clinical study. Am J Ophthalmol 64:860–871 3. Carney LG, Woo GC (1977) Comparison of accommodation with rigid and flexible contact lenses. Am J Optom Physiol Optic 54:595–597 4. Jimenez R, Martinez-Almeida L, Salas C, Ortiz C (2011) Contact lenses vs spectacles in myopes: is there any difference in accommodative and binocular function? Graefes Arch Clin Exp Ophthalmol 249:925–935. doi:10.1007/s00417-010-1570-z 5. Liu L, Yuan J, Li J, Li X, Wang Y (2008) Effect of laser in situ keratomileusis on accommodation. J Huazhong Univ Sci Technol Med Sci 28:596–598. doi:10.1007/s11596-008-0524-8 6. Karimian F, Baradaran-Rafii A, Bagheri A, Eslani M, Bayat H, Aramesh S, Yaseri M, Amin-Shokravi A (2010) Accommodative changes after photorefractive keratectomy in myopic eyes. Optom Vis Sci 87:833–838. doi:10.1097/OPX.0b013e3181f6fccc 7. Koffler BH, Sears JJ (2013) Myopia control in children through refractive therapy gas permeable contact lenses: is it for real? Am J Ophthalmol 156(6):1076.e1–1081.e1. doi:10.1016/j.ajo.2013.04.039 8. Cheung SW, Cho P (2013) Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci 54:1613–1615. doi:10.1167/iovs. 12-10434 9. Cho P, Cheung SW (2012) Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 53:7077–7085. doi:10.1167/iovs. 12-10565 10. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R (2012) Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 53:5060–5065. doi:10.1167/iovs. 11-8005 11. Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T (2012) Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 53:3913–3919. doi:10.1167/iovs. 11-8453 12. Kakita T, Hiraoka T, Oshika T (2011) Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 52:2170–2174. doi:10.1167/iovs. 10-5485 13. Walline JJ, Jones LA, Sinnott LT (2009) Corneal reshaping and myopia progression. Br J Ophthalmol 93:1181–1185. doi:10.1136/bjo.2008.151365 14. Cho P, Cheung SW, Edwards M (2005) The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 30:71–80. doi:10.1080/02713680590907256 15. McLeod ADL (2006) Effects of overnight orthokeratology on phoria, vergence, and accommodation in children. New England College of Optometry, pp. xi, 125 p 16. Brand P (2013) The effect of orthokeratology on accommodative and convergence function: a clinic based pilot study. Optom Vis Perform 1:162–167 17. Antona Peñalba B (2010) Fiabilidad intraexaminador y concordancia de pruebas clínicas de evaluación de la visión binocular Optica II (Optometría y visión). Universidad Complutense de Madrid, Madrid. Spain, pp. 251. Thesis. http://eprints.ucm.es/10149/1/T30728.pdf 18. Antona B, Barra F, Barrio A, Gonzalez E, Sanchez I (2009) Repeatability intraexaminer and agreement in amplitude of accommodation measurements. Graefes Arch Clin Exp Ophthalmol 247:121–127. doi:10.1007/s00417-008-0938-9 19. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness. Cornea 30:646–654. doi:10.1097/ICO.0b013e31820009bc 20. Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, Villa-Collar C, Lorente-Velazquez A (2011) Long-term changes in corneal morphology induced by overnight orthokeratology. Curr Eye Res 36:895–904. doi:10.3109/02713683.2011.593723 21. Palomo-Alvarez C, Puell MC (2008) Accommodative function in school children with reading difficulties. Graefes Arch Clin Exp Ophthalmol 246:1769–1774. doi:10.1007/s00417-008-0921-5 22. Scheiman MM, Wick B (2008) Clinical management of binocular vision : heterophoric, accommodative and eye movement disorders. Lippincott Williams & Wilkins, Philadelphia 23. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R (2014) Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Eye Contact Lens 40:84–90. doi:10.1097/icl.0000000000000014 24. Santolaria E, Cervino A, Queiros A, Brautaset R, Gonzalez-Meijome JM (2013) Subjective satisfaction in long-term orthokeratology patients. Eye Contact Lens 39:388–393. doi:10.1097/ICL.0b013e3182a27777 25. Swarbrick HA (2006) Orthokeratology review and update. Clin Exp Optom 89:124–143. doi:10.1111/j.1444-0938.2006.00044.x 26. Cacho-Martinez P, Garcia-Munoz A, Ruiz-Cantero MT (2014) Is there any evidence for the validity of diagnostic criteria used for accommodative and nonstrabismic binocular dysfunctions? J Optom 7:2–21. doi:10.1016/j.optom.2013.01.004 27. Ninomiya S, Fujikado T, Kuroda T, Maeda N, Tano Y, Oshika T, Hirohara Y, Mihashi T (2002) Changes of ocular aberration with accommodation. Am J Ophthalmol 134:924–926 28. Hazel CA, Cox MJ, Strang NC (2003) Wavefront aberration and its relationship to the accommodative stimulus–response function in myopic subjects. Optom Vis Sci 80:151–158 29. Cheng H, Barnett JK, Vilupuru AS, Marsack JD, Kasthurirangan S, Applegate RA, Roorda A (2004) A population study on changes in wave aberrations with accommodation. J Vis 4:272–280. doi:10.1167/4.4.3 30. Iida Y, Shimizu K, Ito M, Suzuki M (2008) Influence of age on ocular wavefront aberration changes with accommodation. J Refract Surg 24:696–701 31. Yuan Y, Shao Y, Tao A, Shen M, Wang J, Shi G, Chen Q, Zhu D, Lian Y, Qu J, Zhang Y, Lu F (2013) Ocular anterior segment biometry and high-order wavefront aberrations during accommodation. Invest Ophthalmol Vis Sci 54:7028–7037. doi:10.1167/iovs. 13-11893 32. Hiraoka T, Miyata K, Nakamura Y, Ogata M, Okamoto F, Oshika T (2014) Influence of cycloplegia with topical cyclopentolate on higher-order aberrations in myopic children. Eye (Lond). doi:10.1038/eye.2014.34 33. Tarrant J, Liu Y, Wildsoet CF (2009) Orthokeratology can decrease the accommodative lag in myopes. ARVO Meet Abstr 50:4294 34. Gifford P, Li M, Lu H, Miu J, Panjaya M, Swarbrick HA (2013) Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci 90:439–447. doi:10.1097/OPX.0b013e31828ec594 35. Gonzalez-Mesa A, Villa-Collar C, Lorente-Velazquez A, Nieto-Bona A (2013) Anterior segment changes produced in response to long-term overnight orthokeratology. Curr Eye Res 38:862–870. doi:10.3109/02713683.2013.790977 36. Owens H, Garner LF, Craig JP, Gamble G (2004) Posterior corneal changes with orthokeratology. Optom Vis Sci 81:421–426 37. Stillitano IG, Chalita MR, Schor P, Maidana E, Lui MM, Lipener C, Hofling-Lima AL (2007) Corneal changes and wavefront analysis after orthokeratology fitting test. Am J Ophthalmol 144:378–386. doi:10.1016/j.ajo.2007.05.030 38. Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y (2008) Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens 34:17–20. doi:10.1097/ICL.0b013e3180515299 39. Chen D, Lam AK, Cho P (2010) Posterior corneal curvature change and recovery after 6 months of overnight orthokeratology treatment. Ophthalmic Physiol Opt 30:274–280. doi:10.1111/j.1475-1313.2010.00710.x 40. Queiros A, Villa-Collar C, Gutierrez AR, Jorge J, Ribeiro-Queiros MS, Peixoto-de-Matos SC, Gonzalez-Meijome JM (2011) Anterior and posterior corneal elevation after orthokeratology and standard and customized LASIK surgery. Eye Contact Lens 37:354–358. doi:10.1097/ICL.0b013e318232e32d 41. Yoon JH, Swarbrick HA (2013) Posterior corneal shape changes in myopic overnight orthokeratology. Optom Vis Sci 90:196–204. doi:10.1097/OPX.0b013e31828121eb 42. Yuan Y, Chen F, Shen M, Lu F, Wang J (2012) Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye Contact Lens 38:102–108. doi:10.1097/ICL.0b013e318243e795 43. Zhu D, Shao Y, Leng L, Xu Z, Wang J, Lu F, Shen M (2014) Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography. Eye Contact Lens. doi:10.1097/ICL.0000000000000043 44. García A, Cacho P, Lara F (2002) Evaluating relative accommodations in general binocular dysfunctions. Optom Vis Sci 79:779–787 45. Aldaba M, Vilaseca M, Arjona M, Pujol J (2013) Age-related changes in accommodation measured with a double-pass system. Ophthalmic Physiol Opt 33:508–515. doi:10.1111/opo.12038
Collections