Publication:
Extruded polyaniline/EVA blends: Enhancing electrical conductivity using gallate compatibilizers

Research Projects
Organizational Units
Journal Issue
Abstract
The role played by alkyl gallate compatibilizers to enhance the conductivity of extruded polyaniline (PANI)–polyethylene-co-vinyl-acetate (EVA) composites was investigated. PANI doped with dodecylbenzensulfonic acid (DBSA) with 2 S cm−1 conductivity was synthetized via emulsion pathway. The achievement of doped emeraldine salt was confirmed by infrared and X-ray photoelectron spectroscopy. Two gallic acid compatibilizers, namely octyl gallate (OG) and lauryl gallate (LG) were studied by adding increasing amounts (0–20%) to the composite. Gallate compatibilizers enhanced the conductivity of the blend by one order of magnitude, achieving values similar to the pure polyaniline (1–2 S cm−1) using only 30% of PANI. Infrared spectral changes proved the formation of intermolecular hydrogen bonds between EVA and gallate esters and suggested additional interactions with PANI. These interactions improved the adhesion between PANI and EVA, thus explaining the better dispersion of the PANI observed by SEM and the increase in rheological viscosity and shear rate measurements.
Description
Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.synthmet. 2014.01.009. Received 2 October 2013; received in revised form 17 December 2013; accepted 14 January 2014; available online 6 February 2014
Keywords
Citation
[1] A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers, Prog. Polym. Sci. 28 (2003) 1701–1753. [2] H. Ghasemi, U. Sundararaj, Electrical properties of in situ polymerized polystyrene/polyaniline composites:the effect of feeding ratio, Synth. Met. 162 (2012) 1177–1183. [3] T. Jeevananda, Siddaramaiah, V. Annadurai, R. Somashekar, Studies on SLS doped polyaniline and its blend with PC, J. Appl. Polym. Sci. 82 (2001) 383–388. [4] B.H. Jeon, S. Kim, M.H. Choi, I.J. Chung, Synthesis and characterization of polyaniline–polycarbonate composites prepared by an emulsion polymerization, Synth. Met. 104 (1999) 95–100. [5] S.K. Dhawan, N. Singh, D. Rodrigues, Electromagnetic shielding behaviour of conducting polyaniline composites, Sci. Technol. Adv. Mater. 4 (2003) 105–113. [6] M. Zilberman, G.I. Titelman, A. Siegmann, Y. Haba, M. Narkis, D. Alperstein, Conductive blends of thermally dodecylbenzene sulfonic acid-doped polyaniline with thermoplastic polymers, J. Appl. Polym. Sci. 66 (1997) 243–253. [7] S. Koul, R. Chandra, S.K. Dhawan, Conducting polyaniline composite for ESD and EMI at 101 GHz, Polymer 41 (2000) 9305–9310. [8] Y. Cao, P. Smith, A.J. Heeger, Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers, Synth. Met. 48 (1992) 91–97. [9] A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors, Prog. Polym. Sci. 27 (2002) 135–190. [10] J. Prokeš, J. Stejskal, Polyaniline prepared in the presence of various acids. 2. Thermal stability of conductivity, Polym. Degrad. Stab. 86 (2004) 187–195. [11] J. Prokeš, M. Trchová, D. Hlavatá,J. Stejskal, Conductivity ageing intemperaturecycled polyaniline, Polym. Degrad. Stab. 78 (2002) 393–401. [12] X. Lu, H.Y. Ng, J. Xu, C. He, Electrical conductivity of polyaniline–dodecylbenzene sulphonic acid complex: thermal degradation and its mechanism, Synth. Met. 128 (2002) 167–178. [13] S. Kim, I.J. Chung, Annealing effect on the electrochemical property of polyaniline complexed with various acids, Synth. Met. 97 (1998) 127–133. [14] M. Zilberman, A. Siegmann, M. Narkis, Conductivity and structure of meltprocessed polyaniline binary and ternary blends, Polym. Adv. Technol. 26 (2000) 20–26. [15] N. Kohut-Svelko, F. Dinant, S. Magana, G. Clisson, J. Franc¸ ois, C. Dagron-Lartigau, S. Reynaud, Overview of the preparation of pure polyaniline and conductive composites in dispersed media and by thermal processes: from laboratory to semi-industrial scale, Polym. Int. 55 (2006) 1184–1190. [16] P.S. Rao, S. Subrahmanya, D.N. Sathyanarayana, Synthesis by inverse emulsion pathway and characterization of conductive polyaniline–poly(ethylene-covinyl acetate) blends, Synth. Met. 139 (2003) 397–404. [17] M. Rahaman, T.K. Chaki, D. Khastgir, Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in situ polymerization of aniline in EVA matrix, Compos. Sci. Technol. 72 (2012) 1575–1580. [18] R.K. Paul, C.K.S. Pillai, Melt/solution processable conducting polyaniline: elastomeric blends with EVA, J. Appl. Polym. Sci. 84 (2002) 1438–1447. [19] D. Tsocheva, T. Tsanov, L. Terlemezyan, Ageing of conductive polyaniline/poly(ethylene-co-vinylacetate)composites studied by thermal methods, J. Therm. Anal. Calorim. 68 (2002) 159–168. [20] G.M.O. Barra, M.E. Leyva, B.G. Soares, L.H. Mattoso, M. Sens, Electrically conductive, melt-processed polyaniline/EVA blends, J. Appl. Polym. Sci. 82 (2001) 114–123. [21] T. Jeevananda, Thermal and morphological studies on ethylene-vinyl acetate copolymer–polyaniline blends, Thermochim. Acta 376 (2001) 51–61. [22] T. Jeevananda, H. Siddaramaiah, Somashekarappa, R. Somashekar, Electrical, physicomechanical, and X-ray studies on ethylene-vinyl acetate copolymer/polyaniline blends, J. Appl. Polym. Sci. 83 (2002) 1730–1735. [23] M. Narkis, M. Zilberman, A. Siegmann, On the curiosity of electrically conductive melt processed doped- polyaniline/polymer blends versus carbonblack/polymer compounds, Polym. Adv. Technol. 8 (1997) 525–528. [24] M. Zilberman, A. Siegmann, M. Narkis, Melt-processed electrically conductive polymer/polyaniline blends, J. Macromol. Sci. Phys. B 37 (3) (1998) 301–318. [25] J.P. Yang, P. Rannou, J. Planés, A. Prón, M. Nechtschein, Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion, Synth. Met. 93 (1998) 169–173. [26] R. Fryczkowski, C. ´Slusarczyk, J. Fabia, Structure and conducting properties of thermoplastic composites of polypropylene and polyaniline protonated in solid state, Synth. Met. 156 (2006) 310–317. [27] P.S. Rao, S. Subrahmanya, D. Sathyanarayana, Polyaniline–polycarbonate blends synthesized by two emulsion pathways, Synth. Met. 143 (2004) 323–330. [28] S. Palaniappan,A. John, Polyaniline materials by emulsion polymerization pathway, Prog. Polym. Sci. 33 (2008) 732–758. [29] R. Mezzenga, J. Ruokolainen, G.H. Fredrickson, E.J.Kramer, D. Moses,A.J. Heeger, O. Ikkala, Templating organic semiconductors via self-assembly of polymer colloids, Science 299 (2003) 1872–1874. [30] E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states, Prog. Polym. Sci. 23 (1998) 277–324. [31] X.-L. Wei, M. Fahlman, A.J. Epstein, XPS study of highly sulfonated polyaniline, Macromolecules 32 (1999) 3114–3117. [32] M.G. Han, S.K. Cho, S.G. Oh, S.S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met. 126 (2002) 53–60. [33] B.-J.Kim, S.-G. Oh,M.-G.Han, S.-S.Im, Synthesis andcharacterizationofpolyaniline nanoparticles in SDS micellar solutions, Synth. Met. 122 (2001) 297–304. [34] O. Ikkala, J. Ruokolainen, G.T. Brinked, M. Torkkeli, R. Serimaa, Mesomorphic state of poly(vinylpyridine)-dodecylbenzenesulfonic acid complexes in bulk and in xylene solution, Macromolecules 28 (1995) 7088–7094. [35] A.V. Nand, S. Ray, M. Gizdavic-Nikolaidis, J. Travas-Sejdic, P.A. Kilmartin, The effects of thermal treatment on the antioxidant activity of polyaniline, Polym. Degrad. Stab. 96 (2011) 2159–2166. [36] W. Yin, E. Ruckenstein, Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid, Synth. Met. 108 (2000) 39–46. [37] M. Trchová, I. Ŝedĕnková, E. Tobolková, J. Stejskal, FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline film, Polym. Degrad. Stab. 86 (2004) 179–185. [38] L.C. Costa, C.P.L. Rubinger, C.R. Martins, Dielectric and morphological properties of PANI-DBSA blended with polystyrene sulfonic acid, Synth. Met. 157 (2007) 945–950. [39] K. Basavaiah, R.K. Tirumala, R.A.V. Prasada, Synthesis and characterization of dodecylbenzene sulfonic acid doped tetraaniline via emulsion polymerization, J. Chem. 9 (3) (2012) 1342–1346. [40] K. Lozano, J. Bonilla-Rios, E.V. Barrera, A study on nanofiber-reinforced thermoplastic composites (II): investigation ofthe mixing rheology and conduction properties, J. Appl. Polym. Sci. 80 (2001) 1162–1172. [41] N.E. Marcovich, M.M. Reboredo, J. Kenny, M.I. Aranguren, Rheology of particle suspensions in viscoelastic media: wood flour-polypropylene melt, Rheol. Act. 43 (2004) 293–303. [42] A. Ares, S.G. Pardo, M.J. Abad, J. Cano, L. Barral, Effect of aminomethoxy silane and olefin block copolymer on rheomechanical and morphological behavior of fly ash-filled polypropylene composites, Rheol. Act. 49 (2010) 607–618. [43] S.A.R. Hashmi, P. Sharma, N. Chand, Thermal and rheological behaviour of ultra-fine fly ash filled LDPE composites, J. Appl. Polym. Sci. 107 (2008) 2196–2202. [44] O. Bera, M. Trunec, Oscillatory shear rheology of polystyrene melts filled with carbon black and fullerene, Plast. Rubber Compos. 41 (9) (2012) 384–389. [45] Y. Chen, H. Zou, M. Liang, P. Liu, Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends, J. Appl. Polym. Sci. 129 (3) (2013) 945–953. [46] A. Ares, J. Silva, J.M. Maia, L. Barral, M.J. Abad, Rheomechanical and morphological study of compatibilized PP/EVOH blends, Rheol. Acta 48 (2009) 993–1004. [47] B.G. Boyden, B.C. Labrec, V. Wani, Rheological and mechanical properties of polymer blends, radiopaque fillers and coupling agent, in: 70th Annual Technical Conference-Society of Plastics Engineers, vol. 3, 2012, pp. 2130–2136. [48] A.Ares, R. Bouza, S. Pardo, M.J.Abad, L. Barral, Rheological, mechanical and thermal behaviour of wood polymer omposites based on recycled polypropylene, J. Polym. Environ. 18 (2010) 318–325. [49] S.G. Pardo, C. Bernal, A. Ares, M.J. Abad, J. Cano, Rheological, thermal and mechanical characterization of fly ash–thermoplastic composites with different coupling agents, Polym. Compos. 31 (2010) 1722–1730. [50] R. Calheiros, N.F.L. Machado, S.M. Fiuza, A. Gaspar, J. Garrido, N. Milhazes, F. Borges, M.P.M. Marques, Antioxidant phenolic esters with potential anticancer activity: a Raman spectroscopy study, J. Raman Spectrosc. 39 (2008) 95–107. [51] S.W. Kuo, S. Chan, F. Chang, Miscibility enhancement on the immiscible binary blend of poly(vinyl acetate) and poly(vinyl pyrrolidone) with bisphenol A, Polymer 43 (2002) 3653–3660. [52] M.M. Coleman,X. Yang, H. Zhang, P.C. Painter, Ethylene-co-vinyl alcohol blends, J. Macromol. Sci. Phys. B 32 (3) (1993) 295–326. [53] N. Heymans, S. Van Rossum, FTIR investigation of structural modifications during low-temperature ageing of polycarbonate, J. Mater. Sci. 37 (2002) 4273–4277. [54] M. Lindqvist, A.J. Gräslun, An FTIR and CD study of the structural effects of Gtractlength and sequence context on DNA conformation in solution, J. Mol. Biol. 314 (2001) 423–432. [55] O.T. Ikkala, L.O. Pietila, L. Ahjopalo, H. Osterholm, P.J. Passiniemi, On the molecular recognition and associations between electrically conducting polyaniline and solvents, J. Chem. Phys. 103 (22) (1995) 9855–9863.
Collections