Publication:
The Stratospheric Pathway of La Niña

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A Northern Hemisphere (NH) polar stratospheric pathway for La Nina events is established during wintertime based on reanalysis data for the 1958-2012 period. A robust polar stratospheric response is observed in the NH during strong La Nina events, characterized by a significantly stronger and cooler polar vortex. Significant wind anomalies reach the surface, and a robust impact on the North Atlantic-European (NAE) region is observed. A dynamical analysis reveals that the stronger polar stratospheric winds during La Nina winters are due to reduced upward planetary wave activity into the stratosphere. This finding is the result of destructive interference between the climatological and the anomalous La Nina tropospheric stationary eddies over the Pacific-North American region. In addition, the lack of a robust stratospheric signature during La Nina winters reported in previous studies is investigated. It is found that this is related to the lower threshold used to detect the events, which signature is consequently more prone to be obscured by the influence of other sources of variability. In particular, the occurrence of stratospheric sudden warmings (SSWs), partly linked to the phase of the quasi-biennial oscillation, modulates the observed stratospheric signal. In the case of La Nina winters defined by a lower threshold, a robust stratospheric cooling is found only in the absence of SSWs. Therefore, these results highlight the importance of using a relatively restrictive threshold to define La Nina events in order to obtain a robust surface response in the NAE region through the stratosphere.
Description
© 2016 American Meteorological Society. We acknowledge the Japan Meteorological Agency for providing JRA-55 reanalysis data, the University of East Anglia Climatic Research Unit (CRU) for the TS3.21dataset, and the National Center for Environmental Prediction/Climate Prediction Center (NCEP/CPC) for the N3.4 index. M. I. and N. C. are supported by the Spanish Ministry of Economy and Competitiveness through the MATRES (CGL2012-34221) project and the European Project 603557 STRATOCLIM under Program FP7-ENV. 2013.6.1-2. The authors are grateful to R. García Herrera and D. Barriopedro for their helpful discussions and the editor and reviewers who helped improve the manuscript. This work was partially performed during a visit of M. I. at the Max Planck Institute for Meteorology, Hamburg, and M. I. acknowledges MPI-M for the support.
Unesco subjects
Keywords
Citation
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp. Baldwin, M. P., and T. J. Dunkerton, 1998: Quasi-biennial modulation of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 3343-3346, doi:10.1029/98GL02445. ----- , and----- , 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294. 581-584, doi:10.1126/science,1063315. Barriopedro, D. and N. Calvo, 2014: On the relationship between ENSO, stratospheric sudden warmings, and blocking. J. Climate, 27, 4704-4720, doiTOT 175/JCLI-D-13-00770.1. Bell, C. J., L. J. Gray, A. J. Charlton Pérez, M. M Joshi, and A. A. Scaife, 2009: Stratospheric communication of El Nino teleconnections to European winter. J. Climate, 22, 4083-4096, doi:10.1175/2009J CLI2717.1. Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38. L13807, doi:10.1029/2011GL048084. ------, ------, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, doi:10.1088/1748-9326/9/2/024014. ----- , and Coauthors, 2016: The climate-system historical forecast project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413-1427, doi:10.1002/qj.2743. Cagnazzo, C., and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22,1223—1238, doi:10.1175/2008JCLI2549.1. Calvo, N., M. A. Giorgetta, R. Garcia Herrera, and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114. D 13109, doi: 10.1029/2008J D011445. -----, R. R. García, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. ScL, 67, 2331-2340, doi:10.1175/2010JAS3433.1. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449-469, doi:10.1175/JCLI3996.1. Dee, D. P., and Coauthors. 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137. 553-597, doi:10.1002/qj.828. Domeisen, D. I. V., A. H. Butler, K. Frohlich, M. Bittner, W. A. Muller, and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J. Climate, 28,256-271, doi:10.1175/JCLI-D-14-00207.1. Dunkerton, T. J., D. P. Delisi, and M. P. Baldwin, 1988: Distribution of major stratospheric warmings in relation to the quasibiennial oscillation. Geophys. Res. Lett., 15, 136-139, doi:10.1029/G L015i002p00136. Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600-2616, doi:10.1175/1520-0469(1980)037<2600: EPCSFT>2.0.CO;2. Fletcher, C. G„ and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24. 778-794, doi:10.1175/2010JCLI3735.1. Free, M., and D. J. Seidel, 2009: Observed El Niño-Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114. D23108, doi:10.1029/2009JD012420. García Herrera, R., N. Calvo, R. R. García, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 Reanalysis data. J. Geophys. Res., Ill, D06101, doi: 10.1029/2005J D006061. Garfinkel, C. I. and D. L. Hartmann, 2007: Effects of the El Niño Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi: 10.1029/2007JD008481. ------, a n d ----- , 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D 18114, doi.T0.1029/2008JD009920. ----- , A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani. 2012: Why might stratospheric sudden warmings occur with similar frequency in El Nino and La Nina winters? J. Geophys. Res., 117, D19106, doi:10.1029/2012JD017777. Harris, ., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations-The CRU TS3.10 dataset. Int. J. Climatol., 34, 623-642, doi:10.1002/joc.3711. Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10,1769-1786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813-829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2,O.CO;2. Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Nino. Nat. Geosci.,2,32-36, doi:10.1038/ngeo381. Kalnay. E.. and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001. Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi.T0.1029/2011GL048237. Li, Y., and N.-C. Lau, 2013: Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Climate, 26, 4725-4748, doi:10.1175/JCLI-D-12-00581.1. Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadalscale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res.. 113. D10114. doi:10.1029/2007JD009647. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 3863-3881, doi: 10.1175/J CLI3826.1. McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 37-65. [Available online at https://www.jstage.jsl.go.jp/article/ jmsj 1965/60/l/60_l_37/_pdf.] Mitchell, D. M., L. J. Gray, and A. J. Charlton Pérez, 2011: The structure and evolution of the stratospheric vortex in response to natural forcings../. Geophys. Res., 116, D15110, doi:10.1029/2011JD015788. Moron, V., and I. Gouirand, 2003: Seasonal modulation of the El Niño-Southern Oscillation relationship with sea level pressure anomalies over the North Atlantic in October-March 1873-1996. lnt. J. Climatoi, 23, 143-155, doi:10.1002/joc.868. Newman, P. A., E. R. Nash, and J. E. Rosenlield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19999-20010, doi:10.1029/ 2000JD000061. Nishii, K., H. Nakamura, and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: A case-study. Quart. J. Roy. Meteor. Soc., 135, 39-52, doi:10.1002/qj.359. ------, ------, and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37. L13805, doi: 10.1029/2010GL043551. ----- ,------, a n d ------, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetarywave propagation. J. Climate, 24, 6408-6423, doi:10.1175/JCLI-D-10-05021.1. Palmeiro, F. M., D. Barriopedro, R. García Herrera, and N. Calvo, 2015: Comparing sudden stratospheric warming definitions in reanalysis data. J. Climate, 28, 6823-6840, doi:10.1175/JCLI-D-15-0004.1. Pozo Vázquez, D., S. R. Gamiz Fortis, J. Tovar Pescador, M. J. Esteban Parra, and Y. Castro Díez, 2005: El Niño-Southern Oscillation events and associated European winter precipitation anomalies, lnt. ./. Climatoi, 25, 17-31, doi:10.1002/joc.1097. Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, doi: 10.1088/1748-9326/10/12/124021. Sassi, F., D. Kinnison, B. A. Boville, R. R. García, and R. Roble, 2004: Effect of El Niño-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D 17108, doi:10.1029/ 2003JD004434. Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of exlratropical stratosphere-troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/ 2012JD017587. Taguchi, M., 2016: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry. Atmos. Sci. Lett., 17, 33-38, doi:10.1002/asl.595. Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012, doi:10.1256/qj.04.176. Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn.. 44. 1351-1366, doi:10.1007/s00382-014-2155-z.
Collections