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Abstract

Ž .We study the antiferromagnetic O N model in the F lattice. Monte Carlo simulations are applied for investigating the4

behavior of the transition for Ns2,3. The numerical results show a first order nature but with a large correlation length. The
N™` limit is also considered with analytical methods. q 1998 Elsevier Science B.V.
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1. Introduction

The antiferromagnetic formulations of field theo-
ries in four dimensions have been recently paid

w xconsiderable attention 1–5 . The hope is to give
some insight into the well known triviality problem

w xin field theory 6 . Also there are other interesting
w xphenomena as the apparition of new particles 5 .

A spin model, in a simple cubic lattice with first
neighbor interactions, becomes antiferromagnetic if
the coupling is negative. However, with some excep-

w xtions 4,7 , a simple staggered transformation maps
the antiferromagnetic phase into the usual ferromag-
netic one.

1 e-mail addresses: hector, laf@lattice.fis.ucm.es
2 e-mail addresses: carmona, tarancon@sol.unizar.es

To obtain a non-equivalent antiferromagnetic
phase one has to include further couplings or modify

Ž w x.the lattice geometry see for instance ref 8 .
Perhaps the simplest method to obtain non-trivial

antiferromagnetism in four dimensions is to work in
an F lattice. It is defined by taking out the odd sites4
Ž .the sum of the coordinates is odd of a simple
hypercubic lattice.

Ž .Four dimensional antiferromagnetic O N models
Ž .have been already studied by Monte Carlo MC

Ž . Ž .means in this lattice. The O 1 model Ising model
w xwas considered in Ref. 2 : a weak first order transi-

Ž .tion was found. A study of the O 4 model appears
w xin Ref. 3 : in the range of the lattice sizes simulated,

the behavior pointed to a second order transition.
In this letter we consider the intermediate cases:
Ž . Ž .O 2 and O 3 , to know if the order of the transition

changes with N. We will give evidence that the
transitions are in both cases first order, but the
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numerical difficulties grow with N. We also present
an analytical study in the N™` limit.

2. The model

We label the coordinates of an F lattice as a set4
� 4of integers x, y, z,t such that xqyqzq t is even.

We consider the action

SsbHsyb F PF , 1Ž .Ý i j
² :i , j

where the sum runs over 24 pairs of nearest neigh-
bors and the field, F, is a normalized N component
real vector. We work in a hypercubic lattice of size
VsL4r2 with periodic boundary conditions.

Ž .In the ferromagnetic region b)0 this model is
expected to belong to the same universality class of
the simple cubic model: it presents a second order
transition with mean field critical exponents.

Ž .In the antiferromagnetic sector b-0 the sys-
tem also presents an ordering phase transition, but
the structure of the ordered phase is much more
complex. In fact, it can be easily checked that the
ground state presents frustration. Moreover, the or-
dered vacuum is not isotropic.

The independent order parameters we can con-
struct with periodicity 2 are

1
M s F ,ÝF x y z tV x , y , z , t

1 xxM s F y1 ,Ž .ÝA FH x y z tV x , y , z , t

...

1 xqyxyyM s F y1 ,Ž .ÝA FP x y z tV x , y , z , t

.. 2Ž ..

where the sums are extended to all the F sites. The4

dots stand for the other 3 combinations of hyper-
planes and 2 of planes.

We label the site Is1, . . . ,8 inside the 24 ele-
mentary cell with its Cartesian coordinates X,Y,Z,T
s0,1. In practice we measure the 8 different magne-
tizations associated to a given position in the elemen-

tary cells, m , defined as the normalized sum of thei

magnetization for all 24 cells for each of the 8 sites.

8
m sm s F . 3Ž .ÝI X Y ZT x y z tV

x , y , z , t

xyX , . . . even

Ž .The quantities 2 can be expressed as linear
combinations of these magnetizations.

The mean magnetization and the susceptibility are
defined respectively as

8 8V
1 2 2Ms m , xs m . 4Ž .Ý ÝI I8( ¦ ;¦ ; 8Is1 Is1

The Binder Cumulants are defined in a such way
that V bs0 s0 and V bs` s1:M M

8
228 N mŽ .Ý I¦ ;Nq2 Is1OŽN .V s 1y . 5Ž .M 282
2� 0Nq2 mŽ . Ý I¦ ;

Is1

For the connected susceptibility we use the defini-
tion

8
1 2 2x sV m yM . 6² : Ž .Ýc I8ž /

Is1

3. Critical behavior

Ž .yx OFor an operator O that diverges as byb ,c

its mean value at a coupling b in a size L lattice can
be written, in the critical region, assuming the

w xfinite-size scaling ansatz as 9

O L,b sLx O rn F j L,b rL qO Lyv ,Ž . Ž . Ž .Ž .Ž .O

7Ž .

where F is a smooth scaling function and v is theO

universal leading corrections-to-scaling exponent. In
order to eliminate the unknown F function we canO

measure at the coupling where F presents a maxi-O

mum as for x or for the specific heat C . Anotherc V
w xmethod 7 is to study the behavior of the quantities

Q sO sL,b rO L,b . 8Ž . Ž . Ž .O
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w xWe use V L as scaling variable 7 . It is direct toM

obtain
x rn yvOQ ss qO L . 9Ž . Ž .Q ssO V LM

We use that x sg and x s1 to obtain thex E log ŽM .b

critical exponents.
The expected FSS behavior of a first-order transi-

w xtion 10 corresponds to apparent exponents: ns
1rd, as1, gs1.

4. The simulation

We will consider in this letter the cases Ns2,3.
We have used a Metropolis algorithm followed by
N overrelaxation steps as update method, N de-o o

pending on the model and lattice size. We have
worked in lattice sizes up to 48. We used for the
computation the dedicated machine RTNN, consist-
ing in 16 Dual Pentium Pro units. For the largest
lattices we parallelized, using shared memory, in
each dual motherboard. Every f sweeps we mea-
sured the energy, the specific heat and the 8 period-
two magnetizations m . In Table 1 we report theI

parameters of the simulation at the critical region.

Table 1
Ž . ŽDescription of the simulation in the critical region for O 2 upper

. Ž . Ž .part and O 3 lower part . We report the lattice size, the fre-
quency of measures, number of over-relaxation steps for each

Ž .Metropolis one, autocorrelation time t for x , iterations in t

units, and the coupling.

Ž .L f N t x a of t bo

Ž .4 20 3 0.775 9 100000 y0.352
Ž .6 20 3 1.144 14 87000 y0.352
Ž .8 20 3 1.63 4 55000 y0.352
Ž .12 20 3 3.16 6 60000 y0.352
Ž .16 20 3 6.5 5 11400 y0.352
Ž .24 25 4 15.8 7 5000 y0.3516
Ž .32 24 7 32 1 1700 y0.3513
Ž .48 32 7 85 7 312 y0.35125

Ž .4 20 3 0.871 11 98000 y0.53
Ž .6 20 3 1.19 2 82000 y0.53
Ž .8 20 3 1.52 3 98700 y0.53
Ž .12 20 3 2.07 4 63000 y0.53
Ž .16 20 3 3.15 6 48000 y0.53
Ž .24 24 5 4.99 14 29000 y0.5287
Ž .32 28 6 8.7 4 5000 y0.5287
Ž .48 28 6 21 1 2000 y0.5286

In order to extrapolate to the neighborhood of the
critical point, we used the usual reweighting method
w x11 . We also simulated at the maxima of the specific
heat because the region where the extrapolation was
reliable was not large enough. These simulations
were about one fourth of the total CPU time.

The errors were computed with a jack-knife
method, performing 50 blocks in order to achieve
statistical error bars within 10% of precision.

5. The vacuum

< <For large b , all the magnetizations m go toI

unitary vectors, confirming the assumption of a pe-
riod 2 vacuum, so that we can restrict our analysis
only to a unit cell. We also find that M is nonA FP

zero, while M and M vanish.F A FH

When M sM s0, it follows that m sF A FH X Y ZT

m . We checked that the cosine be-1yX ,1yY ,1yZ,1yT

tween m and m goes to 1, withX Y ZT 1yX ,1yY ,1yZ,1yT

the expected Ly4 behavior in the broken phase
corresponds to AFP order.

This ordering is also found near the transition. So
we can restrict ourselves to study only 4 independent
spins.

At Ts0 the frustrated ground state is described
w xin 3 ; it consists in two couples of antiparallel spins,

but the angle between couples is free. The different
choices for the couples determine the plane for AFP
symmetry breaking.

At T)0 we do not know whether there is a
privileged angle or not. It is necessary to determine
the pattern of the symmetry breaking.

A very important point is to determine if the two
couples are aligned or not. To clarify this point we
construct the following tensor:

4
1ab a bT s m =m , 10Ž .Ý K K4

Ks1

where the superindices run for the components of the
N vectors and the sum over the four independent
magnetizations in the elementary cell. It is clear that
if the two couples are aligned, the four tensors as
well as the sum tensor can be simultaneously diago-
nalized, and so we expect in the broken phase a
non-zero value for the largest eigenvalue and zero
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Table 2
Ž . Ž . Ž .Eigenvalues for the tensor 10 for the O 2 model upper part at

Ž . Ž .b sy0.37 and for the O 3 model lower part at b sy0.57.
2Eigenvalue x rd.o.f. Value

Ž .l 0.16 0.20346 15m a x
y6Ž .l 0.13 y0.0 2.2 =10m i n

Ž .l 0.11 0.18986 7m a x
y7Ž .l 0.89 2.3 2.7 =10m ed

y6Ž .l 0.05 y1.7 1.2 =10m i n

Ž y4 . Ž .values up to L effects for the rest Ny1 of
them.

If this holds true, we also expect in the critical
region a Ly2 b rn behavior for the biggest one and a
Ly4 for the others. This will be checked in the next
section.

In Table 2 we show the eigenvalues for both
models in the broken phase. We note that the largest
one goes to a non-zero value while the rest go to

zero. The fit parameters are obtained with a linear
extrapolation in Ly2 for the former case and in Ly4

for the latter.

6. Critical exponents

A determination of the critical exponents is ob-
tained by studying the height of the peaks of C andV

x . For a first order transition both quantities shouldc
Ž .diverge as the volume arns4,grns4 . For small

lattices it is usual to find the apparent critical expo-
nents of a weak first order transition: arns1,grn

Ž w x.s1 see Ref. 12 , which are precursors of a first
order transition.

To analyze the divergence of C a bilogarithmicV

plot is not adequate due to the presence of a non-
negligible constant term. In order to compare with
the first order behavior it is better to plot C and xV c

as a function of several powers of L. This is done in

Ž . Ž .Fig. 1. Specific heat and connected susceptibility for O 2 and O 3 as a function of several powers of the lattice sizes.
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Ž .Fig. 1. We remark that in the O 2 case for L in the
w x Žw x Ž ..interval 8,24 12,32 for O 3 there is an excellent

linear fit for ns1 which is the value predicted in a
weak first order transition. This frequently produces
a misunderstanding of the order of the transition.
However, it is clear from Fig. 1 that this is a
transient effect: for the larger lattices the divergences
are faster than linear, and presumably they would
reach the first order behavior for very large lattices.

The susceptibility also shows a fast divergence.
Although we are not able to observe the asymptotic
first order behavior the trend seems rather clear.

A more accurate measure of the critical exponents
Ž .can be obtained from Eq. 9 . We have always used

the ratio ss2. In Fig. 2 we plot several determina-
tions of exponents using different operators. We
remark that there is a systematic error in the arn

determination because of the analytic term in C .V

We observe no asymptotic behavior in all cases
although the values in the larger lattices are hardly
compatible with a second order transition.

In the upper right part of Fig. 2 we plot the
exponents related with each of the eigenvalues of the

Ž .matrix 10 . While the maximum eigenvalues should
y2 b rn Žbehave as L with brns0 for a first order

. ydtransition , the others should go to zero as L . The
latter can be used as a control of when the asymp-
totic regime is reached. We observe that we are far
from this regime but the first order limit seems rather
clear.

Ž .A comparison between the curves for O 2 and
Ž .O 3 shows a roughly similar shape, differing in a

horizontal shift that corresponds to multiplying the
lattice size by a factor near 2. This fact can be
understood as a correlation length at the critical point

Ž . Ž .which is twice larger for O 3 than for O 2 .

Ž . Ž . Ž . Ž . Ž . ŽFig. 2. Critical exponents for O 2 solid lines and O 3 dashed ones measured through the relation 9 . The filled circles diamond for the
.non-maximum eigenvalues mark the first order limit.



( )H.G. Ballesteros et al.rPhysics Letters B 419 1998 303–310308

7. Critical point and energy histograms

To calculate an estimation for the critical coupling
Ž .we study the b values where V 2 L,b sL M L

Ž .V L,b . In both models, these b for the largestM L L

lattices are compatible within the error bars. We can
L Ž . yxfit to the functional form b yb ` AL in orderc c

to estimate the error bars. We perform these fits with
the full covariance matrix. In both cases we obtain
fitting for LG6 a wide valid range for x and very

2 Ž 2 Ž .good x x rd.o.f.s 1.9r2 for O 2 and
2 Ž ..x rd.o.f.s0.8r2 for O 3 . The results are compat-

ible with the values for the largest lattices. We get
Ž .O 2

b ` sy0.351216 10 11Ž . Ž . Ž .c

Ž .O 3
b ` sy0.52857 2 . 12Ž . Ž . Ž .c

Finally let us comment on the energy distribution
of the configurations. A direct check of the first
order character of a transition is the observation of a
latent heat. Unfortunately, a sharp double peak struc-
ture can be observed only when the lattice size is
much larger than the correlation length at the critical

point. In Fig. 3 we show the energy histograms for
Ž .both models at b . In the O 2 case we note that thec

width of the energy distribution is nearly constant for
the larger lattices, being an indication of the exis-
tence of a two peak distribution that cannot be

Ž .resolved. In the O 3 case, up to Ls48 there is not
a similar behavior.

8. The N™` limit

The partition function of the model can be written
as

ZsZ d NF d F 2 y1 eyNb
X HŽ .ŁH0 j j

j

N da X2j Ž .Ž . 4N N� i a ql 1yF yb Hj j jÝsZ d F e ,ŁH0 j j2pj

13Ž .

where b
X sbrN, and Z is a normalization factor0

such that Z™1 when b™0. We have introduced

Ž .Fig. 3. Normalized energy histogram at b ` for both models.c
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the conjugate parameters a ,l to give an integralj j
2 w xrepresentation of the constraint F s1 13 .j

Writing the quadratic form in the exponent of Eq.
Ž .13 as

y1
f Q f , 14Ž .Ý n nm m2 n ,m

the integration over F yields
Ž .1r2 Ny2 V2p

ZsZ0 ž /N

Ž . 4Nr2� 2 l qi a yTrlnQj jÝ= da e . 15Ž .ŁH j jj

In the limit N™`, a variational equation with
Ž .respect to 2 l q ia givesk k

1s Qy1 . 16Ž .Ž . i i

In order to study the disorder-AF transition in the
Ž .F lattice b-0 , we perform a change of variables4

Žwhich transforms the plane-AF vacuum suppose
.xyy into a ferromagnetic one defining

xqyXF s y1 F . 17Ž . Ž .x y z t x y z t

Q matrix changes and then the propagator, Qy1,
reads

1 1
G p s , 18Ž . Ž .X y2yb j q4 2qg pŽ . Ž .Ž .
where

g pŽ .
scos p cos p qcos p cos p ycos p cos px y z t x z

ycos p cos p ycos p cos p ycos p cos p ,x t y z y t

19Ž .
Ž .and j is defined from translationally invariant

auxiliary fields as

2 l q ia ' yb
X

jy2 q8 . 20Ž . Ž . Ž .Ž .i i

Ž . XFrom the variational Eq. 16 we obtain b imposingc

js`:

d4 p 1
X

b s sy0.178972. 21Ž .Hc 4 y8y4 g pŽ .2pŽ .
Ž .In Table 3 we compare 21 with MC results for

Ns1,2,3,4. The good agreement between the simu-
lations for these values of N and the analytical limit

Table 3
Ž .Critical couplings divided by N for different O N models. We

w x w xinclude also the obtained in Refs. 2 and 3 .

N bc

Ž .1 y0.17459 15
Ž .2 y0.175608 5
Ž .3 y0.17619 1
Ž .4 y0.1766 1

when N™` points to the absence of an abrupt
change of the critical properties as a function of N.
Exactly at Ns` the order of the transition is not
clear, because the divergence in the correlation length
can simply be caused by the Goldstone bosons of the
symmetry breaking.

9. Conclusions

In this letter we present a MC study of the four
Ž . Ž .dimensional antiferromagnetic O 2 and O 3 models

in the F lattice. We study the critical behavior of4

these models with FSS techniques. There is an ap-
parent asymptotic behavior which gives false critical
exponents for not large enough lattice sizes. This
transitory effect can be understood as caused by a
large correlation length whose presence can be

Ždemonstrated for some observables as the eigenval-
ues of the sum tensor of the period-two magnetiza-

.tions . This must be very carefully controlled, be-
cause as we see in our case, the behavior changes
drastically when larger lattice sizes are considered,

Ž . Ž .revealing the true first order nature of the O 2 , O 3
transitions. We also see that this effect is bigger as N
grows, so that for larger values of N, it is very
difficult to study numerically the critical properties
of the system. However, the great accuracy in the
determination of the critical point obtained by the
analytical calculation at Ns` points to a similar
qualitative behavior for all values of N.
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