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We propose a new real space renormalization group transformation useful for Monte Carlo cal-

culations in theories with global or local symmetries. From relaxation arguments we de6ne the
block-spin transformation with two tunable free parameters, adapted to the system's action. Vary-

ing them it is possible to place the Sxed point very close to the simulation point. We show how the
method works in a simple model with global symmetry: the three-dimensional XY model.

PACS number(s): 11.15.Ha, 05.50.+q, 11.10.Gh

I. INTRODUCTION

Real space renormalization group (RSRG) methods
have become an extremely useful tool for understand-
ing critical phenomena. The use of the renormalization
group (RG) ideas in the framework of Monte Carlo simu-
lation has been very successful. However, there are some
difficulties that restrict their use, specially in gauge the-
ories.

The main problem is the necessity of using many cou-
plings to describe the RG trajectory after several scale
transformations. In the case of gauge theories, the preser-
vation of the local symmetry adds a further difficulty in
the definition of the renormalization group transforma-
tion (RGT).

To avoid the appearance of many new significant cou-
plings, we need to improve the RGT in order to get the
RG fixed point closer to the simulation point. In this way
the generated couplings are of relatively less importance
and thus the truncation errors are strongly reduced [1].
This idea has been applied to spin [1] and gauge [2] the-
ories. In these works a sum over neighbor spins or over
different paths is made. The mean is weighted depending
on some free parameters which can be tuned.

Consequently, the way of constructing efBciently the
renormalized fields (RF's) is a key problem. While the
mean over neighbors gives good results in simple models,
it becomes more involved with complex actions.

The situation gets worse when considering gauge the-
ories. In such a case the necessity of preserving gauge
invariance forces to take the mean over ordered products
of 6elds along 6xed-end trajectories. This calculation
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is in practice carried out only for close end points, be-
cause, otherwise, the number of needed trajectories be-
comes very large. When computing in parallel machines
this procedure can become very time consuming. More-
over the chosen trajectories should not leave the consid-
ered block, in order to avoid the exchange of information
among them.

On the other hand it is well known the existence of
powerful relaxation techniques in the study of several
problems like spectroscopy [3] or topological studies [4].
From the point of view of spectroscopy calculations, the
idea is to reduce the short-distance Buctuations, thus ob-
taining a better projection of the operators over the de-
sired physical state.

According to the actual form of the action an ad
hoc transformation of the fields (smearing) is built that
damps the high frequencies. We remark that in the gauge
case it has sense only to consider the smoothing of the
energy distribution or of any other gauge invariant oper-
ator, not of the fields themselves, as the local symmetry
makes meaningless the concept of local value of the field.

Our proposal for a RGT consists of a two step pro-
cedure. We first perform a relaxation transformation,
suitable both for spin and gauge theories, and then, a
simple change of scale (blocking) by a factor of 2 in or-
der to de6ne the RF. There are &ee parameters in the
transformation that allow us to place the fixed point of
the RGT over a wide region of the coupling space. The
best choice corresponds to place it close to the simula-
tion point. By iterating the ROT it is possible to reach
lattice sizes as small as desired; down to side L = 2 if we
start, as will be done in this article, &om lattices with
side L=2.

The study of the coupling Qux in the parameter space is
useful to compute the fixed points and critical exponents
[5]. Using the Schwinger-Dyson equations (SDE's) on the
lattice [6] it is also possible to measure the renormalized
coupling at every RG step.

In this paper we use the three-dimensional XY model,
with weQ-known phase diagram and with critical expo-
nents accurately measured, to simplify the discussion and
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adjust the method. We will particularize the notation to
this case. We remark that the main usefulness of this
proposal lies in the &amework of a gauge theory. Our
attention will be focused on what can be learned in this
simple model, namely: how to choose the better trans-
formation, how to estimate the systematic errors, which
is the best way to reduce the statistical errors, etc.

In Sec. II we present the details of the method, leaving
the discussion of the Schwinger-Dyson equations for Sec.
III. In Sec. IV we study the fiux diagram and fixed point
location, computing the critical exponent v in Sec. V. A
finite size scaling analysis is shown in Sec. VI. Finally
Sec. VII is devoted to conclusions.

where g~ and h~ belong to a compact Lie group, and y
is a character function of the considered group. In spin
models h~ = gp+, and (0'j extends over the nearest
neighbors in the forward direction for instance. On gauge
models (p = (n, p)f stands for all links, hp = g'~ Pi',
and (0') extends over the staples connected to the link p.

Although the proposed methods are general for spin or
gauge and Abelian or non-Abelian systems, in order to
simplify the notation hereafter we will restrict ourselves
to U(l), where g = e's with 8 p (—m, m]. By the same
reason we will consider the fundamental representation,
i.e., the more simple action, with y(g) = Reg = cos8.

The simplest generalization of Eq. (3) is

II. RGT: SMEARING AND BLOCKING

A. Smearing

Let us consider a real scalar field y(x, 7 ) where x be-
longs to a d-dimensional space. One method [3] to damp
the high spatial &equencies of a given configuration is to
consider the evolution driven by the heat equation

whose solution in terms of the Fourier transform P(k, 7')

1s

jr(k, ~) = &j(k, 0)e ""
In this way, with an appropriate selection of r and 7 it
is possible to eliminate &equencies higher than a desired
cutofF.

In practice to compute a 7' evolution following Eq. (&)
is very easy in the lattice. Calling &p„,:—rp(na, sb), after
a discretization of the Laplace operator we obtain the
iterative scheme

'Pn, s+1 Pn, s + & (V n+p, s + 0 n —p, s 2V n, s)

where e = rb/a2, y, = 0, . . . , d —I and p is the unit vector
in the y, direction.

For a general system those equations are substituted
by any iteration that locally reduces the energy. This
process depends on the form of the action and is not uni-

vocally determined; moreover, the variables may belong
to a compact group and, in order to keep them inside
it, we may have to project them back in a specific way.
Another possibility, that avoids the projection over the
group, is to work with variables outside it, in this case,
however, the a priori unknown anomalous dimension of
the new fields should be considered in order to find the
fixed point.

In many spin systems as well as in gauge theories, we
can schematically write the partition function as

Z = dg exp g gp ~p~ )

!.

gp, s+1 = + gp, s + & ) hpo', s

(~)

where 'P means the projection over the group (division
by the modulus in the present case).

This transformation is performed in all lattice sites
in such a way that in the computation of gp, +i in (5)
only the variables at smearing step s are used, even
though some neighbor sites could have been already mod-
ified. The variation of the energy computed changing

gp, ~ gp, +i without modifying hp, is always nega-
tive. However, after a whole sweep, when all variables
are changed, the reduction is expected only for the mean
value of the energy.

In disordered configurations gpht is not near to l (in
the XY model (gpht )

—0.3 near the critical point), and
there are not clear a priori arguments for selecting (5)
between many other transformations.

In fact we will use

Qp, s+1 —gp, s & ap, s g .hpn, s

(crl )
where for the e-power definition we select the argument
of the basis in the (—m, z'] interval (for other groups we

would select suitable symmetric regions). If we write

g( l hp = Ce'es, it is easy to see that the local reduc-

tion of the energy, which always holds, does not depend
on the factor C, thus its smoothing intensity is similar
for disordered (small C) or ordered configurations.

We have numerically found that the transformation (6)
performs better than (5) regarding the stability of the
observables. All the mimerical results presented in this
paper have been obtained with the transformation (6).
We will present in Sec. IV some numerical results about
the performance of the procedure as a function of e and
the number of relaxation iterations n, .

B. Blocking

The relaxation procedure considered above does only
half of the work needed in a RGT. After it, the high
&equencies have been damped out and relevant (low &e-

quency) information has been propagated along the lat-
tice.

After the relaxation procedure all renormalized fields
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at small distances are nearly equal, as we have fiuctua-
tions only at large distances (or small momenta). This
makes nearly irrelevant the sum over paths or over difFer-
ent points for spin systems, and therefore we can follow
a simple decixnation procedure to perform the blocking
transformation without a significant loss of information.
For a gauge theory the decimation consists in replacing
the product U2 „~U2 +& „bya new link of the blocked
lattice, discarding the rest.

Our complete RGT consists then of the following steps:
(1) On the original lattice we perform n, iterations with

(6); (2) we block the system by a factor 2, using decima-
tion.

We are then left with two &ee parameters, n, and e,
which permit us to control the position of the fixed point
inside the critical surface.

Beginning from a cubic (L ) lattice with log2L integer,
after iterating the RGT up to a blocked lattice side equal
to 2 we have a sequence of sizes (N~ = L/2 ) and renor-
malized fields and couplings ({8s),Ps) where b = 0, . . .,
log2L is the block level with b = 0 being the original
lattice.

On the original lattice the dynamics is governed by
the value of the unrenormalized P, parameters. In the
blocked lattices the distribution of the 6elds comes kom
the original distribution and &om our RGT.

We can compute on these lattices not only the observ-
ables but also the couplings needed in order to obtain the
same values for the observables in an independent simu-
lation: the renormalized couplings (see next section).

Starting from a lattice of side L with couplings P =
(Py . . . P . . .) (Np and P respectively, in the previ
ous notation) we arrive to Nq and P after a RGT. The
movement from P to P represents the RG fiux start-
ing from P after a RGT with a scale change of 2. This
discussion applies to all levels of RGT. Once on the fixed
point the system does not evolve anymore. We remark
that in order to accomplish that, it is crucial that all the
steps must be identical at all the blocking levels.

III. SDE FOR THE XY MODEL

after iterating the RGT in the XY model only the nearest
neighbors coupling, Pz, will be significantly nonzero, after
an appropriate selection of the smearing parameters n,
and e.

In order to check it, let us suppose that this is not the
case, and compute more renormalized couplings to see if
they are efFectively zero. We will compute only the next
to nearest renormalized coupling, that is, an interaction
between neighbors at a +2 distance. The calculation of
further couplings is more involved because it sufFers from
more numerical uncertainty and we will assume that this
test is sufficient for our purposes.

The partition function when the two couplings are con-
sidered is

8 = fjd8texp Pq) cos(8 —e +„)
n, p

+P2 ) cos(8 —8~+„+„)~
.

n, p(v

As the number of neighbors in d = 3 is twice as much
for the P2 interaction as for Pq, the phase diagram in the
region where both Igq and P2 are positive (where there is
no frustration), will consist of two phases: ordered and
disordered, separated by a nearly straight line with slope
—

2 that goes through the point (0.45420,0) (see Fig. I).
Let us compute the SDE for this two couplings sys-

tem following the procedure proposed in [6]. Let A(8)
be a function with null expectation value. This trivially
implies that also 8(A(8))/88 = 0.

At a certain blocking level 6 of RGT, we will have a
large number of nonzero couplings and Z will take the
form

Z= exp~ —,8

where S,, function of the renormalized fields, is the action
corresponding to the renormalized coupling i at level b

We have

We will apply, as an example, the precedent method to
the three-dimensional XY model. The conclusions that
we will obtain will be hopefully of a wider generality.

The partition function for that model is

0.20

0.15

T

Z = 88 exp( y COS Hn —Hn+~ ( ) (7) 0.10

where gs is the u»tary vector in the p direction and the
sum in p extends kom 0 to d —1.

In d = 3 this model has a second-order phase tran-
sition, with a global synunetry breaking for (e*e), at
Pq, , = 0.45420(2) and therzruLI critical exponent v in the
range 0.66—0.67 [7,8]. We will use these values to compare
with our computation.

In general, when we perform a RGT new couplings
will be generated in the system. Our goal will be that

0.05

0'
0 0.1 0.2 0.3 0.4

FIG. 1. Approximate representation of the critical surface
of the d = 3 XY model in a taro-dimensional coupling param-
eter space. The 6xed point lies in some point on the surface.
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(A(8 )) = Z [d8 ]A(8 ) exp —) P;S;(8 )
t = 0,

and then ere obtain the identity

cos(8„—8„+„+„)),

(Rs) = () cos(8' —8'„„)),

+p, ,+v, p, (v

B(A(8')), BZ b BA(8~)

-)-P A(8)"(') (»)
n

Taking into account that (A(8~)) = 0 we find

(12)

This algebraic equation relates the value of P~ with ex-
pectation values at a certain blocking level b, and then,
allows us to compute the renormalization couplings &om
the known expectation values. These renormalized cou-
plings, if used in Z, should give us the same values for
all observables at each value of b

We see in (12) that we need as many independent oper-
ators as nonzero couplings in order to invert this equation
and compute the renormalized couplings.

In the hypothesis that also for b & 0 only pi is difFerent
from zero, let us consider the function

A(8 ) = sin(8 —8 +„),

Ai = ) sin(8„—8 +„),
+p

sin(8~ —8„+„+„).
6p. ,+I,p(v

From this expression, it is possible to compute Pi~) P2~,

by inverting the 2 x 2 matrix in (16). With these values
we can draw the fiux diagram of the model on the (Pi, P2)
plane, which permits us to determine the fixed point in
this plane for a concrete RGT prescription.

The use of these techniques allows the determination
of the whole fiux diagram of the model, the number of
couplings being limited by the numerical precision not by
the method itself.

IV. FLUX DIAGRAM: FIXED POINT LOCATION

Let us consider a point in the parameter space P
(Pi~, P2~, . . .) corresponding to the RG block level b. If
this point is near to the fixed point )9' = (Pi, P2, . . .)
the equations for the RG transformation P + —P' =
T(P —)9') can be linearized.

To fix the notation let us call e and A = s~, respec-
tively, to the eigenvectors and eigenvalues of the matrix
T, s being the change of scale. So that we can write

which, when used in Eq. (12), gives
)9 —P'=) t e (18)

) cos(8 —8„+„))

[) sin(8 —8 +„)]

This equality is exact for b = 0.
Let us compute now Pi~ and P2~ assuming that we have

two couplings, see Eq. (8). From (12) we need two oper-
ators to compute the couplings. One of them will be the
previously used A and the other could be

B(8 ) = sin(8 —8 +„+„),

& (&i) ~ & ((Ai)') (AiA2) & & pi )—
I (A, 4 ) ((4 (16)

where

with p P v, that is, an operator with the same fields
combination as S2s, that we hope will be the best one
coupled to P2 giving the best signal-noise relation. Now
the equations for obtaining the RG couplings are

where t~ are the scaling fields at blocking level b that
after a RGT transform as ted+i = s" ts. If all but the
first one are irrelevant fields (that is: y ( 0, Va & 1) it
is useful to write the first coupling as

p,
' —p; = s&'t, e,'+ s')I. t e, .

a)1
(19)

For u & 1, yi —y is typically near 2 (in the 3D XY
model yi = 1.5, y & —1) so that the second term on
the right-hand side (RHS) of (19) is negligible after some
blocking steps.

If we restrict ourselves to a two parameter space
(Pi, P2), the critical surface is approximately shown in
Fig. 1. Starting on any point of the 8 line, at each RG
step the couplings move along it towards the 6xed point
corresponding to the particular RGT.

Close to S but out of it, the relevant field is small and
in the first RG steps its position will have small modifica-
tions, but as the field grows the point will rapidly move
away from the critical line. The irrelevant field, in turn,
will decrease. In this way we will follow asymptotically a
line in the direction of the relevant eigenvector of the ma-
trix T, with eigenvalue related with the critical exponent
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v. Drawing this fiux it is readily seen where are located
the fixed points of the transformation. In Fig. 2 we rep-
resent the fiux obtained in four RG steps starting &om
difFerent places close to the critical point. The points at
P2 ——0 represent the starting points, that is: points on
the original lattice, including the simulation point itself
as well as some neighbor points computed using the spec-
tral density method (SDM) [9]. After a RGT we obtain a
lattice of side L/2 where applying the SDE we compute
Pi and P2i. These points are linearly joined to the pre-
vious ones in Fig. 2 and the process is repeated for the
following RGT.

In the first steps we see, in Fig. 2, that the fiux follows,
with small corrections, the critical line towards the fixed
point. It is clearly seen to be located between the second
and third steps, where the trajectories slightly start to
separate from the critical line. In the fourth step they
are rapidly moving away. A similar behavior for other
RGT will be represented in Fig. 4.

Our aim is to reduce the distance &om the simula-
tion point P, = (P„O,. . .), to the fixed point P'
(Pi, P&, Ps, . . .). As we have only two parameters to tune,
we cannot vanish completely all P, with a ) 1. It is
a necessary condition for the proposed method to work
that the fixed point may approach (P„0,0, . . .) with an
appropriate selection of n, and s.

Numerically the complexity grows very fast with the
number of couplings involved. First we will suppose that
for all a & 1 the couplings ps are equal to zero, the sta-
bility of Pis as a function of b computed with the SD equa-
tion (14) will give us an a posteriori confirmation of the
reliability of that hypothesis. Second, we will consider
that after the first RGT iteration only two nonvanishing
couplings (Pi, Pz) exist. The absolute value of P2 will be
an estimation of the distance from the critical point to
the simulation point.

We will present numerical results in the d = 3 XY
model with lattice sizes ranging from L = 8 up to L = 64.
We have mainly used the WolfF's single cluster algorithm
[10]. We have measured in 100, 50, 40, and 10 thousands

of configurations in L = 8, 16, 32, and 64, respectively.
Successive configurations are separated by a mean of 200
single cluster spin updates. We store every measure in
order to compute the derivatives and to use the SDM.
We have used jackknife for error estimations.

A. One coupling calculation

Let us make the hypothesis that P' = (P„0,0, . . . ,
and therefore let us use expression (14) to compute Pi.
In the original lattice this expression also inakes sense,
and therefore we must obtain the same value for Pie, that
is to say we should have P, = Pie. If we use the SDM to
move in the Pi direction in a neighborhood of P, and plot
Pis(Pi), the point of matching of all couplings corresponds
to the fixed point at this level 'of approximation. If we
do not find the matching in a single point for all levels of
b, this means that the fixed point has not been reached
for this value of (n„e).In this case, the fixed point is
far &om the simulation point and higher-order couplings
are not negligible.

In Fig. 3 we show the evolution of the blocked cou-
pling as a function of the simulation coupling, obtained
with the SDM, for several choices of (n2, s). The data
have been taken in a 163 lattice. We remark that the
function Pi obtained as a function of Pi is efFectively the
identity function. The difFerent parameters choices give
difFerent fixed points, but only if they are not far from
the simulation point the truncated SDE will be accurate.
For n, = 1 we cannot obtain a good behavior for any
value of s (we plot in Fig. 3 the results with the best
value). The results with a standard mean rule (summing
the fields over 2s cubes and normalizing the results) are
of similar quality than for n, = 1 (see Fig. 4 below). For
n, = 2 we plot the data obtained with two close values of
e to show the dependence. On the other hand, it may be
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FIG. 2. Flux in the (Pq, Ps) plane for starting points in a
neighborhood of the critical (single coupling) point, in a 64
lattice. For clarity ere only plot the data until the next-to-last
blocking level.

FIG. 3. Pi computed with the Schwinger-Dysou equation
(14) as a function of the simulation parameter Pq. The difFer-
ent lines correspond to difFerent blocking level b. The slope
grovrs arith b. We show the results for several values of the
RG parameters (n„e).All the numerical data have been ob-
tained from 6000 con6gurations of a 16 lattice at the critical
point.
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FIG. 4. Two-dimensional Bux for several RG transforma-

tions in a 32 lattice. The solid lines correspond to the
usual (n, = 2, e = 0.285) selection, the dashed lines to
(n, = 2, s = 0.2) and the dotted line to a mean rule transfor-

mation without smearing.

FIG. 5. Pi (circles) and Ps (diamonds) parameters as a
function of the blocking level 6 in a 64 lattice. The solid line

corresponds to the single coupling computation [Eq. (14)] and
the dashed ones to the two coupling calculation [Eq. (16)].
The error bars are smaller than the symbol sizes.

also seen in Fig. 3 that increasing the number of smear-
ing steps (see the results with n, = 4) does not improve
significantly the quality of the crossing, making useless
the computational overload.

B. Two couplings calculation

After the renormalization transformation, we expect
that there will be a set of renormalized couplings with
non-negligible values. To learn about the behavior of
p; with i ) 1 we will consider now just two nonzero cou-

plings: Pis, P2s corresponding, respectively, to the first and
second neighbors, that usually give the more important
contributions. Now it is possible to draw the fiux in a
two-dimensional parameter space.

In Fig. 4 we plot the two-dimensional flux for some
smearing transformations in a 32s lattice. The solid lines
correspond to the values (n, = 2, e = 0.285). We have
plotted the trajectories corresponding to starting points
(0.4522,0), (0.4542,0) (central line for each set of trajecto-
ries) and (0.4562,0). To show the importance of the tun-
ing of the e parameter (in moving the fixed point), we also
plot (dashed line) the trajectory with (n, = 2, e = 0.2).
The fixed point is one order of magnitude further. The
situation is even worse when applying a simple major-
ity rule, without smearing, (dotted lines), with a change
in the direction of the Hux. The numerical results for
(n, = l, e = 0.35), not presented in Fig. 4, are again
very similar to those &om the majority rule.

The RGT performed in the following paragraph and
sections will always correspond to the choice (n, = 2, e =
0.285).

In Fig. 5 we show the evolution of the values of the
couplings P~~, I92a using the SDE in a 64s lattice in the ap-
proximations of a single coupling (Pi g 0, P; = 0, Vi ) 1)
and two couplings (pi 2 p 0, I9; = O, Vi ) 2). In both
cases we obtain a stable value after 2 transformations.
The matching of the couplings for the second approxi-
mation is found at the second level of blocking, that is,

we have reached the fixed point. On the other hand, the
small variation of Pia when including a second coupling
in the SDE (about a 5/0) shows the consistence of the
single coupling approximation.

Because of finite size effects (see below) the latter
transformation suffers from a large deviation. The result
shows that with our selection of the smearing parameters
we have (Pi, P2) —(0.43, 0.02). As we have started from
the point (Pi, P2) = (0.4542, 0) the motion has been very
small (the distance moved is similar to that schematically
depicted in Fig. 1).

One may be tempted to tune e in order to obtain Pz ——

0. But there, the SDE with P, = O, Vi ) 1 are also
valid and will produce a deviation between Pi and Pi =
0.4542 that will be larger than the one obtained with
e = 0.285. Remember that this value was selected to
minimize the distance from the fixed point Pi in the one
coupling calculation. We expect that the chosen value of
e will make small the higher-order couplings at the fixed
point.

C. Systematic errors

A first source of errors are the truncation effects that
occur when the calculation is restricted to a single cou-

pling space. Computations with more couplings may be
useful to obtain higher precision results, and in particu-
lar may be eKcient in a model as simple as the one we

are considering here. However, we are not strictly inter-
ested in reducing the truncation efFects but in monitoriz-

ing them, for that reason we introduced the two coupling
calculation. Notice that our main scope is to check the
quality of the results when neglecting higher-order con-
tributions in order to know what can be expected when

applying the method to more complex models. In partic-
ular those with interacting scalar and gauge fields, where
the starting point is an action with several couplings, so
that computing new renormalized higher-order couplings
may become a very complex task.
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Another source of systematic errors is the possible non-

linearity of the RGT in the first RG steps if the starting
point is not close to the fixed point. This effect can be
reduced by discarding the measures at the first iterations.

Unfortunately the last RG steps may be also useless
due to finite size eH'ects. Let us consider for example
the mean value of the energy operator. When the cor-
relation length ( is near I, if we assume a correlation
function of the type G(r) = Ae& "i'~l/r, the contribution
of a path that wraps around the lattice is of the order of
Ae ~/L, which is not negligible compared with the direct
G(1) A. This produces a growing of the value of en-

ergylike observables (0) at the critical point that makes
the crossing between 0 (P) functions to shift to lower
values of P. In other cases, the lattice size puts harder
constraints on the observables, as for example happens
for the mean value (cos(8 +„—Hn „))that becomes ex-

actly 1 when Ns = 2.
However, when using Eqs. (14) and (16) to compute

the blocked couplings, the finite size effects are happily
reduced giving reasonable values even at Ns = 2 when
some operators involved in the computation of the cou-
plings are completely saturated.

A quantitative estimation of finite size efFects must be
done comparing several lattices and blocking levels.

In the next two sections we will give some results re-
garding the computation of the exponent v, showing that
all the systematic errors can be kept under the 3% level.

V. THERMAL EXPONENT FROM THE RG
FLUX

After the determination of the system fiux diagram,
one usually is interested in obtaining the critical expo-
nents. We will now consider several methods to obtain
the exponent v studying the fiux.

A. Derivatives of the renormalised couplings

We can compute v using Eq. (19). However, a direct
use of (19) performing simulations near [but not on the
critical surface (tq ——0)j is not convenient since the first
term on the RHS of (19) grows very fast putting the
renormalized coupling far Rom the critical region after a
few iterations, and consequently loosing sense the linear
approximation.

Alternatively, we can measure vrith a simple simula-
tion at the single coupling critical point (P~, 0, 0, . . .), the
derivative of p~s (14) with respect to pq, just by comput-
ing the derivatives of the observables as the connected
correlations with the intensive energy,

and with the SDM move in a region around this point.
From (19) we obtain

where D;~ = e*.. Notice that Eq. (21) is independent of
the values of t, arith the restriction that they must be
small enough to make valid the linear approximation.

If the second term on the RHS of Eq. (21) is negligible
(naggtely, for b large enough) we can write

log = byjlog(s) + loge~(D )z z .BP, 1 —1

1

If P; are small Vi & 1, we can linearly expand f obtaining

p, = p&+) cp, , (24)

where we have used the identity Pz ——f(Pq, 0, 0, . . .).
In our results for the XY model the difference between
p~' and p~st b & 1 may be estimated as the difference
between the one and two coupiings calculation, that is
about 5%. Anyway, if we use g4) we obtain for the iog-
srith of the derivative of Prs an expression equivalent
of (22) minus a variation of the independent term. The
exponentially decreasing behavior of the rest of the terms
in Eq. (21) remains with the only modification of mul-
tiplicative factors. In conclusion, the lack of a simple
method for computing the couplings P~~ is not expected
to be a source of bias.

Another effect that we could consider is the nonlinear-
ity of the RGT. We expect to find this problem if the fixed.
point is far &om the simulated critical point. We have
confidence that the systematic error from this source is
small since our transformation has the fixed point very
near to the simulation one. However, as we will see, an
error in the 3% level cannot be excluded.

There is a simple method to learn about the impor-
tance of this efFect, that is to compute the derivative of
p~s with respect to p~s, with b' ( b, Rom the derivatives

(25)

Notice that if b' & 0 in Eq. (25) the computations are
never done in the original variables, so that all measures
are done nearer to the fixed point. On the other hand

glthe derivative respect to P~ is computed directly from
Ez~ (it depends on P~s but not on P~s ).

B. Numerical results

Tech~cally it is not possible to compute the P~~ just by
measuring a reduced set of observables. In fact, the value
obtained from Eq. (14) corresponds to the hypothesis of
vanishing of the rest of the couplings. Let us now consider
the possible bias introduced with this approximation in
the computation of v. For a system at t8, using the SDE,
we compute an approximation to the first coupling &om
the mean value of some simple observables that we will
call P~sD. So we can write, for any blocking step,

(23)

S
= s+'e~(D ')g, + ) s+-e~(D )g

1 a)1
In Fig. 6 we show the evolution of logBP~~/BPq as a

function of the block number 6 for the XY model. At b =
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. -0 Using (25) to compute the derivatives with b' = 1 we
obtain, from the linear fitting of the points b = 2, 3, 4 in
the L = 64 lattice,

v = 0.649(20)
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FIG. 6. IogBP&/BPi computed &om (20) as a function of
the block level for the 64 lattice. Here log represents the
natural logarithm.

with 3% of statistical error and an unmeasurable system-
atic one, since it is compatible with the expected value.

Finally let us comment that another source of system-
atic error is the finite size eKect over the critical point.
Until now we have presented the results for v obtained in
the simulation point (P, = 0.4542). In addition to a shift
of the apparent critical point, the latter point itself is
not well defined. From difFerent definitions (namely, the
maximum of the derivative, the crossing point between
couplings at difFerent levels, etc.) we observe variations
of the value of v on the 1—

2%%uo level. For example, com-
puting the derivative at the point where Pi and Pi match
we obtain, for the L = 64 lattice,

v = 0.638(10), L = 64,

U = 0.646(8), L = 32 .
(26)

With 1.5% of statistical error and about 3% of systematic
one (assuming v 6 [0.66, 0.67]).

0.80 i (» i i
(

I I
(

I I I I
(

I I

0.75

0.65 ————hV
5r

0 60 I I I I t I I ~ -I I I I I I I

1 2 3

0 there is a deviation from the straight line (with slope
yi ——I/v) due to the contribution of irrelevant fields. In
the last blocking level the finite size efFects are responsible
of a new deviation.

In Fig. 7 we plot the results computing the ratio be-
tween derivatives of ps and ps (b' ) b) for all lattices
(that is the slope joining any pair of points in Fig. 6 and
equivalents). For b = 1 there are strong deviations for b'

small. For b = 1, 2 the statistical error is about 2% while
the systematic one is under the 3% level.

From linear fits to lnBPi/BPi discarding the first and
last points in the L = 64 and L = 32 lattices we obtain

v = 0.654(11) (28)

with 2% of statistical error and a systematic one under
the 2% level.

VI. FINITE SIZE RENORMALIZATION GROUP

Another method to compute the exponent v is to com-
bine our RGT with a finite size scaling (FSS) analysis
[11]. Up to now, in order to compute fixed points, crit-
ical exponents, etc. , we have been looking for matching,
renormalized couplings, . . ., always starting in a fixed lat-
tice L, and blocking to L/2, . . .2.

It is possible to carry out a very different study: tak-
ing data f'rom two different lattices Li, L2 where RGT
transformations are performed. After some steps, all ir-
relevant fields will be negligible. Comparing the results
obtained from two lattices of original sizes Li and L2,
when different RG steps are taken, in order to end with
the same final lattice, we can use the FSS techniques
to obtain the critical exponent v. Applications of this
method appeared in Refs. [12—14].

In those works, however, a single RG transformation
reduces a L" lattice to (usually) a 2" one. In principle,
our method may be generalized to finite size blocks (L/2
length for instance) just by taking n, large enough, in or-
der to let the system propagate the relevant information
to all the block, avoiding a relevant lost of it after deci-
mation. However, this would make this procedure much
too time consuming.

The FSS ansatz aSrms that in a 6nite system of length
L near the critical point, any dimensionless observable is
a smooth function of (/L. In terms of the coupling we

can write

FIG. 7. Estimations of v I'rom the derivatives BP~/BPq and

BP~ /BPq for all lattices. We only plot the points with b = 0
(larger symbols joined with solid lines), b = 1 (intermediate
symbols and dashed lines), and b = 2 (small symbols and
dotted lines).

(&), = f(L""(/3 —P.)) (29)

this means that the derivative at P = P, is just pro-
portional to a power of the lattice size. Using data from
lattice of sizes Li and L2 we obtain (taking for simplicity
equal final sizes)
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0.80

0.75—

coupling obtained f'rom (14). We observe a clear system-
atic error for the small lattices with opposite sign for the
energy and the coupling. At sizes larger than 16s the
systematic error is under the statistical one with a total
error under the $% level.

0.70 —
p

VII. CONCLUSIONS

065 —"

0.60

FIG. 8. Values for the critical exponent v obtained &om a
Suite size scaling analysis of the couplings at the last (Lr = 2)
level of blocking for the pairs I ~ —I q displayed. The white
points have been obtained from Srst neighbor energy operator
and the 6lled ones &om the corresponding coupling. We have
also included data of a very small lattice (L = 4) as a control.

1 log[d/dP(O)r, „p/(d/dP)(O)r,„,pj p p
P log Li/L

(30)

The procedure is then the following: we consider a Li
lattice, and we block it up to a Lf size. Now we start
with a L2 lattice and block it up to the same Ly value.
By using the observables computed in the L y lattices on
the previous expression we obtain v.

The great advantage of the FSS method is that the
finite size effects are no longer a source of systematic
error that we need to fight against but the quantity we
want to look at. For this reason we expect to obtain the
more accurate values of v in the maximum blocking level

(2 lattice).
The FSS applies for all operators in the lattice. We

can consider the previous renormalized couplings that are
functions of the neighbor correlators, but also the latter
operators themselves.

In Fig. 8 we plot the results obtained using the energy
(next neighbor correlation), as well as the value of the

We have proposed a real space Monte Carlo renormal-
ization group transformation whose main features are as
follows.

It is easy to implement for many systems, even complex
ones, since we only need to define a relaxation procedure.

With 3%%uo of precision level we can neglect the trunca-
tion effects, at least in the 3D XY model.

The code for the transformation is very easy to ixnple-
ment, since the more time-consuming part can be done
with a slight modification of what one usually does in a
local Monte Carlo iteration.

The adaptation to parallel computers is straightfor-
ward since most of the needed operators are local.

As a next step we want to test the method in a gauge
theory. Unfortunately the more simple gauge theories,
with continuous groups, have no critical (second order)
points at 6nite values of the coupling. We project to
study gauge fields coupled to matter [namely, the U(1)-
Higgs model].

However, we have performed some calculation in
the four-dimensional U(1) model at the (first order)
confinement-Coulomb transition. The results show a
good behavior, regarding the stability of the coupling,
after an appropriate tune of the parameters of the trans-
formation.

ACKNOWLEDGMENTS

We acknowledge CICyT for partial financial sup-
port with the projects AEN9$-0604, AEN93-0776, and
AEN94-218. One of us (J.J.R.L.) thanks the MEC
(Spain) for a grant.

[1] R. H. Swendsen, Phys. Rev. Lett. 52, 2321 (1984).
[2] K. C. Bowler et al. , Nucl. Phys. B25'7, 155 (1985); Phys.

Lett. 163B, 367 (1985).
[3] Ape Collaboration, Phys. Lett. B 192, 163 (1987).
[4] RTN Collaboration, M. Garcia Perez et al. , Phys. Lett.

B 305, 366 (1993).
[5] R. H. Swendsen, Phys. Rev. Lett. 47, 1775 (1981).
[6] M. Falcioni et al. , Nucl. Phys. B2B5, 187 (1986).
[7] J. C. Le Gillou and J. Zinn-Justin, J. Phys. Lett. 4B,

L137 (1985).
[8] A. P. Gottlob, M. Hasenbusch, and S. Meyer, in Lattice

'98, Proceedings of the International Symposium, Ams-
terdam, The Netherlands, edited by J. Smit and P. van

Baal [Nucl. Phys. B (Proc. Suppl. ) 30, 838 (1993)];A. P.
Gottlob and M. Hasenbusch, Physica A201, 593 (1993).

[9] M. Falcioni et al. Phys. Lett. 108, 331 (1982); A. M.
Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61,
2635 (1988).

[10] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[11] M. E. Fisher and M. N. Barbour, Phys. Rev. Lett. 28,

1516 (1972).
[12] R. Benzi and R. Petronzio, Europhys. Lett. 9, 17 (1989).
[13] L. A. Fernandez, M. P. Lombardo, R. Petronzio, and A.

Tarancon, Phys. Lett. B 253, 200 (1991).
[14) L. A. Fernandez, A. Munoz Sudupe, R. Petronzio, and

A. Tarancon, Phys. Lett. B 2B7, 100 (1991).




