Publication:
Field and temperature dependence of magnetization in FeCu-based amorphous alloys

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-06-01
Authors
Crespo del Arco, Patricia
Multigner, M.
CastaƱo, F. J.
Casero, R.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, the production of FeCu-based FeCuZr amorphous alloys by ball milling is reported. The thermal dependence of magnetization for the [Fe_(0.5)Cu_(0.5)]_85Zr_(15) (at. %) amorphous alloy has been found to show a dramatic field dependence of the kink point of the magnetization. This kink corresponds to a temperature different from the Curie temperature, above 400 K, of the ferromagnetic phase, which, according to spin waves fitting, can be induced by applying external fields. Just above 235 K, the thermoremanence increases sharply, and this feature strongly suggests an increase of the ferromagnetic ordering under zero field heating. Neutron diffraction experiments seem to confirm the enhancement of spin alignment. The thermal expansion above the compensation temperature is proposed to be the origin of the thermoremanence enhancement through the anti-Invar effect as might be explained within the framework of recent ab initio calculations [M. van Schilfgaarde et al., Nature (London) 400, 46 (1999)].
Description
Ā©2000 The American Physical Society
Keywords
Citation
Collections