Publication:
Janus Mesoporous Silica Nanoparticles for Dual Targeting of Tumor Cells and Mitochondria

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017-07-31
Authors
López, Victoria
Villegas, Maria Rocio
Rodriguez, Veronica
Villaverde, Gonzalo
Lozano Rebollo, Daniel
Baeza, Alejandro
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
ACS
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The development of targeted nanocarriers able to be selectively internalized within tumor cells, and therefore to deliver anti-tumor drugs specifically to diseased cells, constitutes one of the most important goals in nano-oncology. Herein, the development of Janus mesoporous silica particles asymmetrically decorated with two targeting moieties, one of them selective for folate membrane cell receptors (folic acid) and the other one able to bind to mitochondria membrane (triphenylphosphine, TPP), is described in order to achieve sequential cell to organelle vectorization. The asymmetric decoration of each side of the particle allows fine control in the targeting attachment process in comparison with the use of symmetric nanocarriers. The presence of folic acid induces a higher increase in particle accumulation inside tumor cells, and once there, these nanocarriers are guided close to mitochondria by the action of the TPP moiety. This strategy can be applied for improving the therapeutic efficacy of current nanomedicines.
Description
Keywords
Citation
Collections