Publication:
Carbon isotopes of graphite: Implications on fluid history

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012
Authors
Luque del Villar, Francisco Javier
Crespo Feo, Elena
Barrenechea, José F.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
China University of Geosciences (Beijing)
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Stable carbon isotope geochemistry provides important information for the recognition of fundamental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elaboration of models for the global carbon cycle. Carbon isotope ratios in fluid-Deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition.Graphite precipitation in fluid-deposited occurrences results from CO2- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipitation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, CO2 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of d13C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.
Description
UCM subjects
Unesco subjects
Keywords
Citation
Collections