Publication:
β-Ga₂O₃ nanowires for an ultraviolet light selective frequency photodetector

Research Projects
Organizational Units
Journal Issue
Abstract
The behaviour of ß-Ga₂O₃ nanowires as photoconductive material in deep ultraviolet photodetectors to operate in the energy range 3.0-6.2 eV has been investigated. The nanowires were grown by a catalyst-free thermal evaporation method on gallium oxide substrates. Photocurrent measurements have been carried out on both undoped and Sn-doped Ga₂O₃ nanowires to evidence the influence of the dopant on the photodetector performances. The responsivity spectrum of single nanowires show maxima in the energy range 4.8-5.4 eV and a strong dependence on the pulse frequency of the excitation light has been observed for undoped nanowires. Our results show that the responsivity of beta- Ga₂O₃ nanowires can be controlled by tuning the chopper frequency of the excitation light and/ or by doping of the nanowires. Non-linear behavior in characteristic current-voltage curves has been observed for Ga₂O₃ : Sn nanowires. The mechanism leading to this behaviour has been discussed and related to space-charged-limited current effects. In addition, the responsivity achieved by doped nanowires at lower bias is higher than for undoped ones.
Description
© 2014 IOP Publishing Ltd This work has been supported by MINECO through Projects MAT 2012-31959 and Consolider CSD 2009-00013. IL acknowledges the mobility grant EEBB-I-13-05954.
Keywords
Citation
Collections