Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection



Downloads per month over past year

Cicuendez, Monica and Doadrio Villarejo, Juan Carlos and Hernandez, ana and Portolés Pérez, María Teresa and Izquierdo-Barba, Isabel and Vallet Regí, María (2017) Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomaterialia . ISSN 1742-7061

[thumbnail of pagination_ACTBIO_5162.pdf] PDF

Official URL:


Multifunctional-therapeutic three-dimensional (3D) scaffolds have been prepared. These biomaterials are able to destroy the S. aureus bacterial biofilm and to allow bone regeneration at the same time. The present study is focused on the design of pH sensitive 3D hierarchical meso-macroporous 3D scaffolds based on MGHA nanocomposite formed by a mesostructured glassy network with embedded hydroxyapatite nanoparticles, whose mesopores have been loaded with levofloxacin (Levo) as antibacterial agent. These 3D platforms exhibit controlled and pH-dependent Levo release, sustained over time at physiological pH (7.4) and notably increased at infection pH (6.7 and 5.5), which is due to the different interaction rate between diverse Levo species and the silica matrix. These 3D systems are able to inhibit the S. aureus growth and to destroy the bacterial biofilm without cytotoxic effects on human osteoblasts and allowing an adequate colonization and differentiation of preosteoblastic cells on their surface. These findings suggest promising applications of these hierarchical MGHA nanocomposite 3D scaffolds for the treatment and prevention of bone infection.
Statement of Significance
Multifunctional 3D nanocomposite scaffolds with the ability for loading and sustained delivery of an antimicrobial agent, to eliminate and prevent bone infection and at the same time to contribute to bone regeneration process without cytotoxic effects on the surrounding tissue has been proposed. These 3D scaffolds exhibit a sustained levofloxacin delivery at physiological pH (pH 7.4), which increasing notably when pH decreases to characteristic values of bone infection process (pH 6.7 and pH 5.5). In vitro competitive assays between preosteoblastic and bacteria onto the 3D scaffold surface demonstrated an adequate osteoblast colonization in entire scaffold surface together with the ability to eliminate bacteria contamination.

Item Type:Article
Additional Information:

RESEARCHER ID G-9445-2017(Juan Carlos Doadrio Villarejo))
ORCID 0000-0001-7912-5663(Juan Carlos Doadrio Villarejo)
RESEARCHER ID M-9921-2014(Isabel Izquierdo Barba)
ORCID 0000-0002-4139-4646 (Isabel Izquierdo Barba)
RESEARCHER ID M-3378-2014 (María Vallet Regí)
ORCID 0000-0002-6104-4889 (María Vallet Regí)

Uncontrolled Keywords:3D scaffolds; Biocompatibility; Biofilm; Co-culture assays; Levofloxacin; S. aureus; pH-dependent release
Subjects:Sciences > Chemistry > Chemical engineering
Sciences > Chemistry > Materials
Sciences > Chemistry > Chemistry, Inorganic
ID Code:45506
Deposited On:23 Nov 2017 13:15
Last Modified:09 Nov 2018 00:01

Origin of downloads

Repository Staff Only: item control page