Impacto
Downloads
Downloads per month over past year
Antoranz Canales, Pedro and Barrio Uña, Juan Abel and Bonnefoy, Simon Francois Albert and Contreras González, José Luis and Domínguez, A. and Fidalgo, D. and Fonseca González, Mª Victoria and López Moya, Marcos and Miranda Pantoja, José Miguel and Nievas Rosillo, Mireia (2017) Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009. Astronomy & astrophysics, 603 . ISSN 1432-0746
Preview |
PDF
3MB |
Official URL: http://dx.doi.org/10.1051/0004-6361/201629540
Abstract
Aims. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the γ-ray range from 0.1 GeV to 20 TeV, RXTE and Swift to cover wavelengths from UV to hard X-rays, and GASP-WEBT that provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St.Petersburg observatories. We evaluate the variability of the source and interband correlations, the γ-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios.
Methods. The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands, where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the “single-curve SSC model adjustment” typically reported in the literature.
Results. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two-independent-zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very high energy (> 100 GeV, VHE) γ-rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE γ-rays).
Conclusions. The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month long observing campaign in 2009, the highest-energy (and most variable) electrons that are responsible for the VHE γ-rays do not make a dominant contribution to the ∼1 keV emission. Alternatively, there could be a very variable component contributing to the VHE γ-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed γ-ray flaring activity, with the EVPA rotation coincident with the first γ-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.
Item Type: | Article |
---|---|
Additional Information: | © ESO 2017. Artículo firmado por 293 autores. The authors thank the anonymous referee for providing a very detailed and constructive list of remarks that helped us to clarify and improve some of the results reported in the manuscript. The MAGIC Collaboration would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015- 68278-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210- C6-6-R, AYA2013-47447-C3-1-P, AYA2015-71042-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/NHESS-MAGIC/2010/0. |
Uncontrolled Keywords: | Gamma-ray emission; Bl-lacertae objects; Extragalactic background light; Spectral energy-distribution; X-ray; Multiwavelength observations; TeV blazars; Telescope observations; Crab-nebula; Stochastic acceleration. |
Subjects: | Sciences > Physics > Electricity Sciences > Physics > Electronics Sciences > Physics > Nuclear physics |
ID Code: | 46138 |
Deposited On: | 07 Feb 2018 11:11 |
Last Modified: | 10 Dec 2018 14:57 |
Origin of downloads
Repository Staff Only: item control page