Publication:
A molecular mechanism of symmetry breaking in the early chick embryo.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The first obvious sign of bilateral symmetry in mammalian and avian embryos is the appearance of the primitive streak in the future posterior region of a radially symmetric disc. The primitive streak marks the midline of the future embryo. The mechanisms responsible for positioning the primitive streak remain largely unknown. Here we combine experimental embryology and mathematical modelling to analyse the role of the TGFβ-related molecules BMP4 and Vg1/GDF1 in positioning the primitive streak. Bmp4 and Vg1 are first expressed throughout the embryo, and then become localised to the future anterior and posterior regions of the embryo, where they will, respectively, inhibit or induce formation of the primitive streak. We propose a model based on paracrine signalling to account for the separation of the two domains starting from a homogeneous array of cells, and thus for the topological transformation of a radially symmetric disc to a bilaterally symmetric embryo.
Description
Keywords
Citation
1. Birsoy, B., Kofron, M., Schaible, K., Wylie, C. & Heasman, J. Vg 1 is an essential signaling molecule in Xenopus development. Development 133, 15–20, https://doi.org/10.1242/dev.02144 (2006). 2. Lu, F. I., Thisse, C. & Thisse, B. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proceedings of the National Academy of Sciences of the United States of America 108, 15876–15880, https://doi.org/10.1073/pnas.1106801108 (2011). 3. Fauny, J. D., Thisse, B. & Thisse, C. The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136, 3811–3819, https://doi.org/10.1242/dev.039693 (2009). 4. Lutz, H. Sur la production expérimentale de la polyembryonie et de la monstruosité double chez les oiseaux. Arch. Anat. Microsc. Morphol. Exp 38, 79–144 (1949). 5. Spratt, N. T. & Haas, H. Integrative mechanisms in development of the early chick blastoderm. I. Regulative potentiality of separated part. J. Exp. Zool. 145, 97–137 (1960). 6. Seleiro, E. A., Connolly, D. J. & Cooke, J. Early developmental expression and experimental axis determination by the chicken Vg1 gene. Current biology: CB 6, 1476–1486 (1996). 7. Shah, S. B. et al. Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. Development 124, 5127–5138 (1997). 8. Skromne, I. & Stern, C. D. A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 114, 115–118 (2002). 9. Bertocchini, F., Skromne, I., Wolpert, L. & Stern, C. D. Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131, 3381–3390, https://doi.org/10.1242/dev.01178 (2004). 10. Bertocchini, F. & Stern, C. D. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Developmental cell 3, 735–744 (2002). 11. Bertocchini, F. & Stern, C. D. Gata2 provides an early anterior bias and uncovers a global positioning system for polarity in the amniote embryo. Development 139, 4232–4238, https://doi.org/10.1242/dev.081901 (2012). 12. Streit, A. et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519 (1998). 13. Eyal-Giladi, H. & Kochav, S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Developmental biology 49, 321–337 (1976). 14. Turing, A. M. The chemical basis of morphogenesis. Phil Trans R Soc Lon B: Biol Sci 641, 37–72 (1952). 15. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972). 16. Economou, A. D. et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature genetics 44, 348–351, https://doi.org/10.1038/ng.1090 (2012). 17. Raspopovic, J., Marcon, L., Russo, L. & Sharpe, J. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345, 566–570, https://doi.org/10.1126/science.1252960 (2014). 18. van Boxtel, A. L. et al. A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain. Developmental cell 35, 175–185, https://doi.org/10.1016/j.devcel.2015.09.014 (2015). 19. Burrill, D. R. & Silver, P. A. Making cellular memories. Cell 140, 13–18, https://doi.org/10.1016/j.cell.2009.12.034 (2010). 20. Schultz, D., Walczak, A. M., Onuchic, J. N. & Wolynes, P. G. Extinction and resurrection in gene networks. Proceedings of the National Academy of Sciences of the United States of America 105, 19165–19170, https://doi.org/10.1073/pnas.0810366105 (2008). 21. Torlopp, A. et al. The transcription factor Pitx2 positions the embryonic axis and regulates twinning. eLife 3, e03743, https://doi. org/10.7554/eLife.03743 (2014). 22. Reversade, B. & De Robertis, E. M. Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123, 1147–1160, https://doi.org/10.1016/j.cell.2005.08.047 (2005). 23. Xu, P. F., Houssin, N., Ferri-Lagneau, K. F., Thisse, B. & Thisse, C. Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344, 87–89, https://doi.org/10.1126/science.1248252 (2014). 24. Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392, https://doi.org/10.1038/nature02418 (2004). 25. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & development 9, 2105–2116 (1995). 26. Soares, M. L., Torres-Padilla, M. E. & Zernicka-Goetz, M. Bone morphogenetic protein 4 signaling regulates development of the anterior visceral endoderm in the mouse embryo. Development, growth & differentiation 50, 615–621, https://doi. org/10.1111/j.1440-169X.2008.01059.x (2008). 27. Pereira, P. N. et al. Antagonism of Nodal signaling by BMP/Smad5 prevents ectopic primitive streak formation in the mouse amnion. Development 139, 3343–3354, https://doi.org/10.1242/dev.075465 (2012). 28. van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242, https://doi.org/10.1242/dev.113001 (2014). 29. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature methods 11, 847–854, https://doi.org/10.1038/nmeth.3016 (2014). 30. Etoc, F. et al. A Balance between Secreted Inhibitors and Edge Sensing Controls Gastruloid Self-Organization. Developmental cell 39, 302–315, https://doi.org/10.1016/j.devcel.2016.09.016 (2016). 31. Hamburger, Va. H. H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951). 32. New, D. A. T. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morphol. 3, 326–331 (1955). 33. Stern, C. D. & Ireland, G. W. An integrated experimental study of endoderm formation in avian embryos. Anatomy and embryology 163, 245–263 (1981). 34. Lee, H. C. et al. Cleavage events and sperm dynamics in chick intrauterine embryos. PloS one 8, e80631, https://doi.org/10.1371/ journal.pone.0080631 (2013). 35. Stern, C. D. Detection of multiple gene products simultaneously by in situ hybridization and immunohistochemistry in whole mounts of avian embryos. Current topics in developmental biology 36, 223–243 (1998). 36. Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995). 37. Kispert, A., Ortner, H., Cooke, J. & Herrmann, B. G. The chick Brachyury gene: developmental expression pattern and response to axial induction by localized activin. Developmental biology 168, 406–415, https://doi.org/10.1006/dbio.1995.1090 (1995). 38. Kispert, A., Koschorz, B. & Herrmann, B. G. The T protein encoded by Brachyury is a tissue-specific transcription factor. The EMBO journal 14, 4763–4772 (1995). 39. Knezevic, V., De Santo, R. & Mackem, S. Two novel chick T-box genes related to mouse Brachyury are expressed in different, nonoverlapping mesodermal domains during gastrulation. Development 124, 411–419 (1997). 40. Sheng, G. & Stern, C. D. Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech Dev 87, 213–216 (1999). 41. Logan, M., Pagan-Westphal, S. M., Smith, D. M., Paganessi, L. & Tabin, C. J. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94, 307–317 (1998). 42. Zhu, L. et al. Cerberus regulates left-right asymmetry of the embryonic head and heart. Current biology: CB 9, 931–938 (1999). 43. Skromne, I. & Stern, C. D. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128, 2915–2927 (2001).
Collections