On nuclearity of embeddings between Besov spaces



Downloads per month over past year

Cobos, Fernando and Domínguez, Oscar and Kühn, Thomas (2018) On nuclearity of embeddings between Besov spaces. Journal of Approximation Theory, 225 . pp. 209-223.

[thumbnail of Fernando110libre.pdf]


Let Bp,qs,α(Ω) be the Besov space with classical smoothness s and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in Rd. For s1, s2 ∈ R, 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1 − s2 = d − d(1/p2 − 1/p1)+, we show a sufficient condition on q1, q2 for nuclearity of embedding Bs1,α1 (superíndices) y p1, q1 (subíndices)(Ω) → Bp2,α2 (superíndice) y s2 q,2 (subíndices) (Ω). We also show that the condition is necessary in a wide range of parameters.

Item Type:Article
Uncontrolled Keywords:Espacios de Besov
Palabras clave (otros idiomas):Besov spaces, Nuclear embeddings, Generalized smoothness
Subjects:Sciences > Mathematics
Sciences > Mathematics > Functional analysis and Operator theory
ID Code:47561
Deposited On:15 Feb 2019 12:06
Last Modified:18 Feb 2019 08:23

Origin of downloads

Repository Staff Only: item control page