Impacto
Downloads
Downloads per month over past year
Cobos, Fernando and Domínguez, Oscar and Kühn, Thomas (2018) On nuclearity of embeddings between Besov spaces. Journal of Approximation Theory, 225 . pp. 209-223.
Preview |
PDF
422kB |
Abstract
Let Bp,qs,α(Ω) be the Besov space with classical smoothness s and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in Rd. For s1, s2 ∈ R, 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1 − s2 = d − d(1/p2 − 1/p1)+, we show a sufficient condition on q1, q2 for nuclearity of embedding Bs1,α1 (superíndices) y p1, q1 (subíndices)(Ω) → Bp2,α2 (superíndice) y s2 q,2 (subíndices) (Ω). We also show that the condition is necessary in a wide range of parameters.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Espacios de Besov |
Palabras clave (otros idiomas): | Besov spaces, Nuclear embeddings, Generalized smoothness |
Subjects: | Sciences > Mathematics Sciences > Mathematics > Functional analysis and Operator theory |
ID Code: | 47561 |
Deposited On: | 15 Feb 2019 12:06 |
Last Modified: | 18 Feb 2019 08:23 |
Origin of downloads
Repository Staff Only: item control page