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Abstract

This paper describes in detail how to bridge the gap between theory and practice when imple-
menting in Maude structural operational semantics described in rewriting logic, where transitions
become rewrites and inference rules become conditional rewrite rules with rewrites in the condi-
tions, as made possible by the new features in Maude 2.0. We validate this technique using it in
several case studies: a functional language Fpl (evaluation and computation semantics, including
an abstract machine), imperative languages WhileL (evaluation and computation semantics) and
GuardL with nondeterminism (computation semantics), Kahn’s functional language Mini-ML (eval-
uation or natural semantics), Milner’s CCS (with strong and weak transitions), and Full LOTOS
(including ACT ONE data type specifications). In addition, on top of CCS we develop an imple-
mentation of the Hennessy-Milner modal logic for describing local capabilities of processes, and
for LOTOS we build an entire tool where Full LOTOS specifications can be entered and executed
(without user knowledge of the underlying implementation of the semantics). We also compare this
method based on transitions as rewrites with another one based on transitions as judgements.

Keywords: Rewriting logic, Maude 2.0, executability, structural operational semantics, metalan-
guage, CCS, LOTOS, ACT ONE.

1 Introduction

In the context of proposing rewriting logic as a logical and semantic framework, the paper [48] il-
lustrated several different ways of mapping inference systems into rewriting logic. A very general
possibility is to map an inference rule of the form

S1...5,
So

into a rewrite rule of the form Sy ... S,, — Sy that rewrites multisets of judgements .S;. This mapping
is correct from an abstract point of view, as justified in [48], but thinking in terms of executability of
the rewrite rules, it is more appropriate to consider rewrite rules of the form Sy — 57 ... .5, that still
rewrite multisets of judgements but go from the conclusion to the premises, so that rewriting with
these rules corresponds to searching for a proof in a bottom-up way. Again this mapping is correct,
and in both cases the intuitive idea is that the rewriting relation corresponds to the horizontal bar
separating conclusion from premises in the typical textbook presentation of inference rules. We call
this method transitions as judgements.

These mappings can be applied to a wide variety of inference systems, as explained in [48], including
sequent systems for logics and also structural operational semantics definitions for languages. However,
in the operational semantics case, judgements S; typically have the form of some kind of transition
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P, — Q; between states so that it makes sense to consider the possibility of mapping directly this
transition relation between states to a rewriting relation between terms representing the states. When
thinking this way, an inference rule of the form

P1—>Q1 Pn—>Qn
Py — Qo

becomes a conditional rewrite rule of the form

Py— Qo if Pr—QiN...NP, — Qn,

where the condition includes rewrites. In this way the semantic rules become (conditional) rewrite
rules, where the transition in the conclusion becomes the main rewrite of the rule, and the transitions
in the premises become rewrite conditions. We call this method transitions as rewrites.

Rules of this form were already considered by Meseguer in the seminal paper [50] on rewriting
logic. At the logical level, this mapping is again correct, but one must be careful to take into account
in the mapping additional information appearing in the transitions of the operational semantics. For
example, in structural operational semantics for process algebras it is essential for the transitions to
have some labelling information that provides the mechanism for synchronization. How to solve these
details in the particular case of Milner’s CCS [52] was already shown in [48]. Moreover, the papers
[11, 20] showed the good properties of this semantic mapping for CCS.

The recent availability of the rewriting logic language Maude 2.0 [15, 16, 17] has made it possible
to put into practice the approach based on transitions as rewrites, because Maude 2.0 allows indeed
conditional rules with rewrites in the conditions, where those rewrites are solved at execution time
by means of a built-in search mechanism. Thus, we undertook the project of carefully implementing
in a fully executable way the CCS operational semantics in order to practically assess the ideas sum-
marized above that theoretically were elegant and correct. CCS was taken only as a first example;
the desired solutions in our search of executability would should be general enough to handle many
other operational semantics definitions, considering the approach of transitions as rewrites and using
conditional rules with rewrites in the conditions.

To validate this approach we have thus far considered several different operational semantics for
programming languages. On the one hand we have implemented all the evaluation (big step) and
computation (small step) semantics presented by Hennessy in [36] for functional and imperative pro-
gramming languages, including several variants like call-by-value versus call-by-name, or using sub-
stitutions versus extending the environment. This paper describes all of them in full detail. Another
functional language whose semantics we have implemented is Kahn’s Mini-ML [45]; the letrec syntactic
construct in this language requires a special treatment that deserves consideration.

On the other hand, in addition to the operational semantics of the CCS process algebra, we have
implemented in Maude a symbolic semantics for LOTOS [44], following this technique of transitions
as rewrites. Moreover, in the case of these process algebras we show how the implementation of the
semantics can be used to develop formal analysis tools. In the CCS case we integrate it with an
implementation of the Hennessy-Milner modal logic [38] for describing local capabilities of processes;
and in the LOTOS case, we integrate it with a translation of ACT ONE [27] data type specifications
into functional modules in Maude, building an entire tool where Full LOTOS specifications can be
entered and executed (without user knowledge of the underlying implementation of the semantics).

In our opinion, the approach based on transitions as rewrites is really simpler than the one based
on transitions as judgements, because it is closer to the mathematical textbook presentation of the
operational semantics and in general requires less auxiliary structures or operations. However, there
is still the need to bridge some gaps between theory and practice, and in this case the new frozen
attribute available in Maude 2.0 has also played an important role, as described in detail in Section 6.2.
The declaration of an operator as frozen forbids rewriting its arguments, thus providing another way
of controlling the rewriting process.

An important and very outstanding characteristic of all our implementations provided by the
Maude language and system is the integration in the same framework of all the specification levels
necessary to implement in detail the semantics of a given language. First, writing the grammar for the



(abstract) syntax of the language corresponds to defining the algebraic signature in the corresponding
algebraic specification. Then, all the data and corresponding operations necessary for the implemen-
tation are described by means of equational specifications. On top of them, the (dynamic) semantics
of the language is defined by means of rewrite rules, as we have described above. Although we do
not treat this in this paper, it is also possible to describe the static semantics of a language (like type
checking, for example) using these techniques, but in this case the approach based on transitions as
judgements may be more appropriate. In addition, if more control is necessary one can user reflection
to go up to the metalevel, as we do for instance in Section 6.4 to define the semantics of a modal logic
that requires considering all possible rewrites (or transitions). The integration of all these aspects is
precisely what allows our development of a semantics for Full LOTOS, where the ACT ONE data
type specifications are translated into functional Maude modules. Furthermore, the metalanguage
features of Maude allow us to build in a fully integrated way a tool for Full LOTOS that includes
input /output, parsing (taking into account the user-definable syntax of ACT ONE specifications),
execution, pretty-printing, etc. in such a way that the Maude definition is hidden from the user that
only needs to know about the Full LOTOS specifications that are to be executed.

Concerning the implementation of the operational semantics, the methods that we describe in
this paper assume that we are given a correct structural operational semantics for a language. Of
course, it is also possible to develop such an implementation precisely with the purpose of prototyping
a proposed semantics and then modify it according to the information obtained by the tests in the
execution. Assuming the semantics is given, the first step consists in identifying the structure necessary
to build the lefthand and righthand sides of the rewrites. Although this may be very simple in some
cases, in our examples we can see that usually there is additional structure that has to be taken into
account, like environments in the case of functional languages that we put in the lefthand side, or
synchronization labels in the case of process algebras that we put in the righthand side.

Having done this, in general, translating the semantics rules into rewrite rules is a quite systematic
process. However, one has to make sure that those rules are executable and, moreover, that they
execute as one expects. For example, in the CCS example, we will see the use the frozen attribute to
ensure that rewriting only takes place at the top of a state, and that rewrite conditions do not give rise
to non-terminating executions. As another example, the mathematical rule for the letrec construct
of Mini-ML is not executable, because there is an existential variable in the condition that appears
both in the lefthand and righthand sides of a rewrite and that in principle one does not know how to
instantiate.

All the examples in this paper provide full details about our treatment of these semantics. After a
brief review of the main features of Maude 2.0 in Section 2, the following sections develop the details of
several case studies: a functional language Fpl (evaluation and computation semantics with variants,
as well as an abstract machine), an imperative language WhileL (evaluation and computation seman-
tics), an imperative nondeterministic language GuardL (computation semantics), Kahn’s functional
language Mini-ML (evaluation or natural semantics), Milner’s CCS (with strong and weak transitions,
plus the Hennessy-Milner logic), and Full LOTOS (including ACT ONE data type specifications and
a complete tool). Section 8 summarizes the transitions as judgements approach and compares it with
the transitions as rewrites. Section 9 reviews some related work and Section 10 concludes the paper
describing some ideas for future work.

Some results in this paper were previously reported in the conference papers [72, 68], and in the
PhD. thesis [70].

2 Rewriting logic and Maude

Rewriting logic was introduced by Meseguer [50] as a unified model of concurrency in which several
well-known models of concurrent systems can be represented in a common framework. Since then
much work has been done on the use of rewriting logic as a logical and semantic framework [48, 49], in
which many different logics, models of computation, and a wide range of languages, including formal
specification languages, can be represented, given a precise semantics, and executed. Among the
advantages of rewriting logic, we may emphasize the following:



e [t is a simple formalism, with only a few rules of deduction that are easy to understand and
justify.

e [t is very flexible and expressive, capable of representing change in systems with very different
structure.

e It allows user-definable syntax, with complete freedom to choose the operators and structural
properties appropriate for each problem.

e It is intrinsically concurrent, representing concurrent change and supporting reasoning about
such change.

e [t supports modelling of concurrent object-oriented systems in a simple and direct way.

e It has initial models, that can be intuitively understood as providing “no junk” and “no confu-
sion.”

e [t is realizable in the wide spectrum logical language Maude, supporting executable specification
and programming.

Maude is a high-level language and high-performance system supporting both equational and
rewriting logic computation. We use in this paper Maude 2.0 [15, 16, 17], a new version with greater
generality and expressiveness; in particular, Maude 2.0 allows rewrite conditions which are essential
for the implementation of the semantic definitions we are going to present.

In rewriting logic and Maude the data on the one hand and the state of a system on the other are
both formally specified as an algebraic data type by means of an equational specification. In this kind
of specifications we can define new types (by means of the keyword sort); subtype relations between
types (subsort); operations (op) for building values of these types, giving the types of their arguments
and result, and which may have attributes as being associative (assoc) or commutative (comm), for
example; and equations (eq) that identify terms built with these operators. The following functional
module (with syntax fmod. ..endfm) defines the natural numbers with an addition operation:

fmod NATURAL-NUMBERS is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat [assoc comm].
vars N M : Nat .
eq O+ N =N .
eq s(N) + s(M) = s(s(N + M)) .
endfm

Equations are assumed to be confluent and terminating, so that we can use the equations to reduce
a term t to a unique, canonical form ¢’ that is equivalent to ¢ (they represent the same value).

Maude uses a very expressive version of equational logic, namely membership equational logic
[2, 51], that (in addition to all the above) allows the statement of membership assertions (mb) char-
acterizing the elements of a sort. For example, we can extend the NATURAL-NUMBERS module with the
following two memberships

mb O : Even .
mb s(s(E:Even)) : Even .

defining a subsort Even of even natural numbers. Notice the on-the-fly declaration for the variable E
of sort Even. In Maude 2.0 a variable is an identifier composed of a name, a colon, and a sort name;
in this way, variables do not have to be declared in variable declarations, although such declarations
are still allowed for convenience.

Membership equational logic also has a notion of (implicit) error supersorts called kinds, which in
Maude are not explicitly declared, but are instead represented as sort names between square brackets.
Using kinds, we can declare partial operations (at the level of sorts), like for example the following
integer division operation on natural numbers:



op _div_ : Nat Nat -> [Nat]

Notice that this is not at all the only possible way of treating partiality in membership equational
logic. For example we could also define a subsort NzNat of non-zero natural numbers and then declare
_div_ as a total operation

op _div_ : Nat NzNat -> Nat .

The dynamic behaviour of a distributed system is specified by rewrite rules of the form ¢t — ¢/,
that describe the local, concurrent transitions of the system. That is, when a part of a system matches
the pattern ¢, it can be transformed into the corresponding instance of the pattern ¢’. Rewrite rules
are included in system modules (with syntax mod. . .endm). For example, the following module defines
non-deterministic natural numbers and non-deterministic choice. A module can import, or include,
the definitions of another module by means of the keyword inc (short for including).

mod NONDETERMINISTIC-NATURAL-NUMBERS is
inc NATURAL-NUMBERS .
sort NdNat .
subsort Nat < NdNat .
op _7_ : NdNat NdNat -> NdNat [assoc comm].
var N : Nat . var ND : NdNat .
rl [choice] : N 2 ND => N .
endm

A multiset of natural numbers is regarded as a non-deterministic natural number of sort NdNat,
that is, a number that could be any among those in the multiset. The operation _?_ denotes the
union of non-deterministic natural numbers, which is associative and commutative, and the choice
rule provides non-deterministic choice.

Rewrite rules can take the most general possible form in the variant of rewriting logic built on top

of membership equational logic, that is, they can be of the form
t—t if (/\u, = ;) A (/\wj‘ : Sj) A (/\pk — Q)
) J k

with no restriction on which new variables may appear in the righthand side or in the condition.
Conditions in rules are formed by an associative conjunction connective /\, allowing equations (both
ordinary equations t = t’, and matching equations t := t’ where new variables occurring in t be-
come instantiated by matching [15, 16]), memberships (t : s), and rewrites (t => t’) as conditions.
In that full generality the execution of a system module will require strategies that control at the
metalevel the instantiation of the extra variables in the condition and in the righthand side. However,
a quite general class of system modules, called admissible modules, are executable by Maude 2.0’s
default interpreter. Essentially, the admissibility requirement ensures that all the extra variables will
eventually become instantiated by matching [15].

When executing a conditional rule, the satisfaction of all its conditions is attempted sequentially
from left to right; but notice that, besides the fact that many matches for the equational conditions
may be possible due to the presence of equational axioms, we also have to deal with the fact that
solving rewrite conditions requires search, including searching for new solutions when previous ones
fail to satisfy subsequent conditions. Therefore, the default interpreter supports search computations.
The search command looks for all the rewrites of a given term that match a given pattern satisfying
some condition (we will see some examples in Section 3.2).

Another Maude 2.0 feature which is very important for our intended semantics applications is the
frozen attribute [16]. When an operation is declared as frozen, its arguments cannot be rewritten
by rules (it is also possible to declare operations with only some arguments frozen, but we will not
make use of this generality). This is important in situations where the rewriting process should only
happen at the top, like in many operational semantics for process algebras, like CCS, as we will see
in Section 6.2; however, there are more reasons for using the frozen attribute, related in general to
avoiding situations of non-termination in the execution of rewrite conditions, as we will explain in
some detail in Section 6.2.



Maude should be viewed as a metalanguage [14] in which the syntax and semantics of computational
models and languages can be formally defined, and in which entire environments for such languages
can be built (including parsers, execution environments, pretty printing, and input/output). We will
see how an environment of this kind has been built for LOTOS in Section 7.4.

Reflection is the main feature to achieve these powerful metalanguage functionalities. Rewriting
logic is reflective [12, 18], that is, there is a finitely presented rewrite theory U that is universal in the
sense that we can represent any finitely presented rewrite theory R (including ¢ itself) and any terms
t,t' in R as terms R and %,t in U, and we then have the following equivalence:

REt—t & UF(RT) — (R,).

Intuitively, this means that we can work with theories as data at the metalevel, combining and ma-
nipulating them, and controlling the rewriting process.

In Maude, key functionality of the universal theory U has been efficiently implemented in the
functional module META-LEVEL, where Maude terms are reified as elements of a data type Term,
Maude modules are reified as terms in a data type Module, the process of reducing a term to normal
form is reified by a function metaReduce, and the process of applying a rule of a system module to a
subject term is reified by a function metaApply [16]. These basic operations can be combined to build
strategies [12] that control the process of rewriting.

Search is also reified at the metalevel by means of the operation metaSearch (used in Section 6.4),
which receives as arguments the metarepresented module to work in, the starting term for search, the
pattern to search for, a side condition, the kind of search (which may be ’* for zero or more rewrites,
>+ for one or more rewrites, and ’! for only matching normal forms), the depth of search, and the
required solution number which is used to index all possible solutions. It returns the term matching
the pattern, its type, and the substitution produced by the match.

For creating an environment for a language using Maude, we need generic syntax definition, meta-
parsing, and meta-pretty printing capabilities that can deal with expressions in any language, including
languages like Maude itself whose modules have user-definable syntax. And we need a general facility
for input/output that can be customized for each language of interest. Section 7.4 explains how all
this is done in Maude thanks to its reflective design, in our application of these techniques to the
development of a tool for Full LOTOS.

3 The functional language F'pl

We begin our description of how to implement structural operational semantics in Maude with a simple
functional language. Fpl (Functional Programming Language [36]) is a language with arithmetic and
Boolean expressions, if-then-else, local variable declarations (let), function declarations defined by the
user (with the possibility of mutual recursion), and function calls.

In this paper we describe the implementation of three different semantics for Fpl: a quite abstract
evaluation semantics, a more detailed computation semantics, and an even more concrete semantics
which uses an abstract machine. A different functional language (Mini-ML) is implemented later in
Section 5.

3.1 Functional syntax definition

The abstract syntax of Fpl, with an obvious intuitive meaning, is described in Figure 1. A program
consists of an expression together with a declaration, (e, D). Intuitively, D supplies the definitions for
all the function names in e. By using membership axioms we could define when a program (e, D) is
correct, that is, when all the functions used in e are defined in D, but we have not done so here in
order to simplify the presentation.

This syntax is implemented in the following functional module FPL-SYNTAX. Note that the signature
structure corresponds to the grammar structure defined by the syntax of the language in Figure 1 (the
prec attribute is used to associate precedence values to the different operators, so that parentheses
are not necessary to disambiguate terms [16]). In addition, as can be expected in a really executable



1. Syntactic categories

p € Prog op € Op r € Var
D € Dec bop € BOp bx € BVar
e € LEp n € Num F € FunVar
be € DBExp
2. Definitions
p == (e, D)
D = F(xy,...,21) <—=c¢e|F(x1,...,21) <= e,D
op = +[—|x
bop == And|Or
e == nlale ope’|lfbe Then e Elsee’ |let z=¢"ine” | F(ey,...,ex)
be == bx|T|F|be bopbe” | Not be’ | Equal(e,e’)

Figure 1: Abstract syntax for Fpl.

semantics, we had to fill in the details that in the textbook presentation are left out, like the definition
of the natural numbers in this case.

fmod FPL-SYNTAX is
protecting QID .

sorts Var Num Op Exp BVar Boolean BOp BExp FunVar
VarList NumList ExpList Prog Dec .

op V : Qid -> Var .
subsort Var < Exp .
subsort Num < Exp .

op BV : Qid -> BVar .
subsort BVar < BExp .
subsort Boolean < BExp .

op FV : Qid -> FunVar .
ops + - * : -> 0Op .

op O : -> Num .
op s : Num -> Num .

subsort Exp < ExpList .
op _,_ : ExpList ExpList -> ExpList [assoc prec 30]

op ___ : Exp Op Exp -> Exp [prec 20]

op If_Then_Else_ : BExp Exp Exp -> Exp [prec 25]
op let_=_in_ : Var Exp Exp -> Exp [prec 25]

op _‘(_‘) : FunVar ExpList -> Exp [prec 15]

ops T F : -> Boolean .
ops And Or : -> BOp .
op ___ : BExp BOp BExp -> BExp [prec 20]

op Not_ : BExp -> BExp [prec 15]
op Equal : Exp Exp -> BExp .

subsort Var < VarList .
op _,_ : VarList VarList -> VarList [assoc prec 30]
subsort VarList < ExpList

subsort Num < NumList .
op _,_ : NumList NumList -> NumList [assoc prec 30]
subsort NumList < ExpList

op < > : Exp Dec -> Prog .

—5—

op nil : -> Dec .



op _‘(_“)<=_ : FunVar VarList Exp -> Dec [prec 30] .

op _&_ : Dec Dec -> Dec [assoc comm id: nil prec 40] .
op exDecl : -> Dec .
eq exDecl =

FV(’Fac) (V(°x)) <= If Equal(V(’x),0) Then s(0)
Else V(°x) * FV(’Fac) (V(’x) - s(0)) &
FV(C’Rem) (V(°x) , VO’y)) <= If Equal(V(’x),V(’y)) Then 0
Else If Equal(V(’y) - V(’x), 0) Then V(’y)
Else FVC’Rem) (V(’°x) , V(Cy) - V(’x)) &
FV(’Double) (V(’°x)) <= V(’x) + V(’x) .
endfm

We use the predefined quoted identifiers, of sort Qid, for representing variable identifiers in the
language Fpl. Instead of declaring this sort as a subsort of Var, since Qid is also used to represent
Boolean variables, we have constructors V and BV that transform the Qids to values of sorts Var
and BVar, respectively. As arithmetic constants we use the natural numbers in Peano notation, with
constructors 0 and s.

In addition to the complete syntax of Fpl, the above module includes a constant exDecl, with a
set of function declarations that we will use later on.

The abstract syntax of Fpl in Figure 1 is common for the three semantic definitions presented
in [36], and that we are going to see in the following sections. However, in order to make easier
the representation in Maude 2.0 of these different semantics, some changes will be done in module
FPL-SYNTAX. These changes could have been done from the beginning, but we prefer to have different
versions in order to point out the (small) differences.

We define in another functional module AP an operation Ap for the application of a binary operator
to two already evaluated arguments. Again, this module supplies some details that are usually left
out in a textbook presentation of the semantics. A third functional module ENV is used to define
environments that associate values to variables, either arithmetic or Boolean. These two modules are
independent of the concrete representation of the semantics.

fmod AP is
protecting FPL-SYNTAX .

op Ap : Op Num Num -> Num .

vars n n’ : Num .

eq Ap(+, 0, n) =n

eq Ap(+, s(n), n’) = s(Ap(+, n, n’)) .

eq Ap(*¥, 0, n) =0

eq Ap(¥, s(n), n’) = Ap(+, n’, Ap(*, n, n’)) .
eq Ap(-, 0, n) =0

eq Ap(-, s(n), 0) = s(n) .
eq Ap(-, s(n), s(n’)) = Ap(-, n, n’) .

op Ap : BOp Boolean Boolean -> Boolean .
var bv bv’ : Boolean .

eq Ap(And, T, bv) = bv .

eq Ap(And, F, bv) = F .

eq Ap(Or, T, bv) =T .

eq Ap(Or, F, bv) = bv .
endfm

fmod ENV is
protecting FPL-SYNTAX .

sorts Value Variable .
subsorts Num Boolean < Value .
subsorts Var BVar < Variable .



CR T VarR

DpFn=—-4n D,ptkax =4 px)
DpFe=4v D,pke =4
OpR
D,pteope = a Ap(op,v,v')
IR DpFbe=—=pT DpFe=4v D,pkbe =pF Dipke =4 v
D,ptIf be Then e Else ¢/ =4 v D,ptEIf be Then e Else e/ =>4 v/
LocR Dpke=4w D,_p[v/x]l—e'zAv'
D,pkletz=eine =4 v
DpFei=—=4v;, 1<i<k
D, plvr/x1,...,vp/ap]Fe=av
FunR e “<eisin D
b D,pF Fle,...,ex) =>a v (@1, m) = e s in
Figure 2: Evaluation semantics for Fpl, = 4.
sort ENV .
op mt : -> ENV .
op _=_ : Variable Value -> ENV [prec 20]
op __ : ENV ENV -> ENV [assoc id: mt prec 30]

op _(_) : ENV Variable -> Value .
op _[_/_] : ENV Value Variable -> ENV [prec 35] .
op remove : ENV Variable -> ENV .

vars X X’ : Variable . var V : Value . var rho : ENV .

eq (X = V rho)(X’) = if X == X’ then V else rho(X’) fi .

eq rho [V / X] = remove(rho, X) X =V .

eq remove(mt, X) = mt .

eq remove(X = V rho, X’) = if X == X’ then rho else X = V remove(rho,X’) fi .
endfm

Operations mt, _=_ and __ (in the module ENV) are used to build empty environments, singleton
environments, and union of environments, respectively. The operation _(_) is used to look up the
value associated to a variable in an environment, and it is defined recursively by means of an equation.
The operation _[_/_] is used to modify the binding between a variable and a value in an environment,
and it is defined by means of the auxiliary operation remove that eliminates a given variable from an
environment.

3.2 Evaluation semantics

The evaluation semantics for Fpl is given by means of two relations: =4 and =p, corresponding,
respectively, to arithmetic and Boolean expressions. For evaluating an arithmetic expression e we
need an environment p which assigns concrete values to the variables occurring in e, and a set of
declarations D giving a context for the function names in e. Thus, judgements in this semantics will
have the form D, p F e =4 v. The same happens with Boolean expressions since, although function
calls are only arithmetic expressions, these expressions can also be used to build Boolean expressions
by means of the Equal operator. Judgements for evaluating Boolean expressions will be of the form
D,pt be =>p bv.

By definition, we have that p - (e, D) = v if and only if D,p b e =>4 v. The semantic rules
for the transition relation =4 are shown in Figure 2, and the corresponding ones for the transition
relation = p in Figure 3.

The rule FunR says that for evaluating F(eq,...,ex), first all the arguments have to be evalu-
ated, and then the body of the definition of F' has to be evaluated, in an environment where the



BCR — R BVarR
DopFT—p5T D, pFF—p5F M D pF b =5 p(b)

D,pFbe=pblv
D,pkbel =g b’

BOpR
P D, pE be bop be’ = Ap(bop, bv, bv')
NotR D,pFbe=pT D,ptbe=pF
© D,pF Notbe — 5 F D,pF Notbe —p5 T

D,pFe=4v DipFe=4v
Dpke =4 v D,pke =4

EqR P A P A v#Ev

D,ptF Equal(e,e’) =5 T D,pt Equal(e,e’) =5 F

Figure 3: Evaluation semantics for Boolean expressions, = p.

formal parameters have been bound to the values of the corresponding actual parameters. This is the
mechanism known as call-by-value. Below we will also see the alternative known as call-by-name.

The semantics uses the operation Ap for applying a binary operator to two arguments, implemented
above in the module AP. Variable environments and the operation for the modification of their bindings
are implemented in the module ENV. The next module EVALUATION has the rewrite rules representing
the evaluation semantics for Fpl, both for arithmetic and Boolean expressions.

mod EVALUATION is
protecting AP . protecting ENV .

In order to represent the semantic rules in Maude, first the elements on both sides of the arrow in
a judgement have to be represented as terms in Maude. In this semantics, on the left we have a set of
declarations, an environment, and an expression. These three elements are represented by a term of
sort Statement. On the right we can have an arithmetic or Boolean expression, or a list of arithmetic
expressions (as we will see in a moment). Notice the use of the sort Statement to ensure that both
sides of the rewrite rules are going to have a common sort.

sort Statement .
subsorts Num Boolean NumList < Statement .

op _,_|-_ : Dec ENV Exp -> Statement [prec 40]
op _,_|l-_ : Dec ENV BExp -> Statement [prec 40] .
op _,_|-_ : Dec ENV ExpList -> Statement [prec 40] .

The axioms (semantic rules without premises) are translated as (unconditional) rewrite rules,
where the transition in the conclusion simply becomes the rewrite rule. Rules CR and VarR are two
examples.

vars D D’ : Dec . var rho : ENV . var n : Num .

var x : Var . var bx : BVar . var v v’ : Num .
var bv bv’ : Boolean . var op : Op . vars e e’ : Exp .
vars be be’ : BExp . var bop : BOp . var F : FunVar .
var el : ExpList . var x1 : VarList . var vl : NumList .

rl [CR] : D,rho |- n =>n .

rl [VarR] : D,rho |- x => rho(x) .

The rest of the semantic rules (with premises) are translated to conditional rewrite rules where
the main rewrite corresponds to the transition in the conclusion, and the rewrites in the conditions
correspond to the transitions in the premises. Conditions are ordered (remember that they are checked
sequentially from left to right), and therefore information can flow from one condition to the next;
this happens in the rule LocR below, where the value of v is obtained in the first condition and is later
used in the second.

10



crl [OpR] : D,rho |- e op e’ => Ap(op,v,v’)
if D,tho |- e =>v /\ D,rho |- e’ => v’ .

crl [IfR1] : D,rho |- If be Then e Else e’ => v

if D,rho |- be =T /\ D,rho |- e => v .
crl [IfR2] : D,rho |- If be Then e Else e’ => v’

if D,rho |- be => F /\ D,rho |- e’ => v’ .

crl [LocR] : D,rho |- let x = e in e’ => v’
if D,rho |- e =>v /\ D,rholv / x] |- e’ => v’ .

The rule FunR presents a problem: the number of premises is not fixed, because it depends on
the concrete function call that has to be evaluated, specifically on the number of arguments that it
has. We solve this problem by considering the list of actual parameters as a new syntactic category,
consisting of non-empty lists of arithmetic expressions, and we write a semantic rule that evaluates
lists of expressions. The modified rule FunR and the new rule ExpLR for the evaluation of lists of
expressions are the following:

D,ptel =4 vl
D, p[l/zl]Fe=4v

FunR
t D,pF Flel) =4 v

F(zl) < eisin D

D,pFe=4v D,ptel =4 vl
D,pkFe,el =4 v,vl

ExpLR

Their representation as rewrite rules is as follows:

***x call-by-value
crl [FunR] : D,rho |- F(el) => v
if D,rho |- el => vl /\ F(xl)<= e & D’ :=D /\ D,rholvl / x1] |- e => v .

crl [ExpLR] : D,rho |- e, el => v, vl
if D,rho |- e => v /\ D,rho |- el => vl .

Note how the condition F(x1)<= e & D’ := Din the rule FunR extracts from the set of declarations
D the declaration corresponding to the function F. The resolution of the conditions through matching
modulo associativity and commutativity binds variables x1, e, and D’.

The semantic rules for Boolean expressions are represented in the same way. When a semantic
rule has a side condition, like the second rule EqR in Figure 3, this is represented also as a condition
in the rewrite rule (see below rule EqR2).

rl [BCR1] : D,rho |- T => T .
rl [BCR2] : D,rho |- F =>F .

rl [BVarR] : D,rho |- bx => rho(bx) .

crl [BOpR] : D,rho |- be bop be’ => Ap(bop,bv,bv’)
if D,rho |- be => bv /\ D,rho |- be’ => bv’ .

crl [NotR1] : D,rho |- Not be => F
if D,rho |- be => T .

crl [NotR2] : D,rho |- Not be => T
if D,rho |- be => F .

crl [EqR1] : D,rho |- Equal(e,e’) =>T
if D,rho |- e =>v /\ D,rho |- e’ => v .
crl [EqR2] : D,rho |- Equal(e,e’) =>F
if D,rho |- e =>v /\ D,rho |- e’ = v’ /\ v =/=v’ .
endm

The module EVALUATION is an admissible module, directly executable in Maude 2.0. Next we show
some examples. In [36] this semantics is illustrated using as an example the program (Rem(3,5), D),
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where D is the declaration of function Rem(z,y) that calculates the remainder of dividing y by x. The
set of declarations exDec1l given in the module FPL-SYNTAX in Section 3.1 already includes a recursive
declaration of the function Rem, together with a recursive declaration of the factorial function Fac.
The next command evaluates the program above in our Maude implementation.

Maude> rew exDecl, mt |- FV(’Rem) (s(s(s(0))), s(s(s(s(s(0)))))) .
rewrites: 240 in Oms cpu (3ms real) (~ rewrites/second)
result Num: s(s(0))

Maude 2.0 takes approximately 3 milliseconds in rewriting this term, quite simple, and about 1.5
seconds in calculating the factorial of 9:

Maude> rew exDecl, mt |- FV(’Fac) (s(s(s(s(s(s(s(s(s(0))INI)
rewrites: 409612 in Oms cpu (1421ims real) (~ rewrites/second)
result Num: 362880

where we have adapted the output to use the decimal representation. Most of this time is used in the
equations of the operation Ap. If we modify the syntax by using the predefined sort Nat as a subsort
of Num, and we use the predefined builtin operations in the definition of Ap, the efficiency profit is
considerable, as the following examples show:

Maude> rew exDecl, mt |- FV(’Fac)(9) .
rewrites: 418 in Oms cpu (5ms real) (~ rewrites/second)
result NzNat: 362880

Maude> rew exDecl, mt |- FV(’Fac) (42) .
rewrites: 1813 in Oms cpu (27ms real) (~ rewrites/second)
result NzNat: 1405006117752879898543142606244511569936384000000000

We can use the search command to check that a given expression can only be reduced to a unique
value, that is, that the semantics is deterministic.

Maude> search exDecl, mt |- FV(’Fac) (s(s(s(0)))) =>+ V:Num .
Solution 1 (state 1)
V:Num --> s(s(s(s(s(s(0))))))

No more solutioms.

This command is also useful to prove that a given transition is possible in the semantics, that
is, that it is derivable by using the semantic rules. For example, the following execution proves that
the judgement D, p - Fac(2) =>4 2 is derivable in the Fpl evaluation semantics, where Fac is the
factorial function.

Maude> search exDecl, mt |- FV(’Fac) (s(s(0))) =>+ s(s(0)) .
Solution 1 (state 1)
empty substitution

No more solutiomns.

We can also ask Maude to trace the rewriting process, showing us in which order the rules are
applied. In order to be able to show here the result, we can only trace a very simple example. The
next trace, modified by hand to clarify the steps, shows how the evaluation semantics rules are applied
to calculate the factorial of 1. The numbers used to enumerate the rule applications correspond to the
numbers used to enumerate the different judgements in the derivation tree in Figure 4. In this tree
we do not show the set of function declarations, that does not change throughout the proof.

12



el

r=1Fx=,1®

r=1F0=,00

r=0Fz=,40®
r=1Fz=41® r=0F0=40 00

r=1Fl=—,41® z=0FEq(z,0) =5 T av r=0F1=4102

r=1Fx—-1=,0® r=0FIf...=,103

r=lhe=al® r=1FFac(z—1)=4 109

xr=1FEq(z,0) =pF®

x=1Faz«*Fac(z —1) =41 0

mtb1 =410

x=1FIf Eq(x,0) Then 1 Else z *Fac(z — 1) =>4 1 (16

mt F Fac(l) =41 a7

Figure 4: Derivation tree for Fac(1) (call-by-value).



Maude> rew exDecl, mt |- FV(’Fac) (s(0))

**xx rule CR

exDecl,mt |- s(0)

_—
s(0)

*x* rule VarR
exDec1,V(’x) =
—_—
s(0)

*xx rule CR
exDecl,V(’x) =
—-—=>

0

***x rule EqR2
exDecl,V(’x) =
-—=>

F

**xx rule VarR
exDec1,V(’x) =
—

s(0)
*x* rule VarR

exDec1,V(’x) =
-—
s(0)

**xx rule CR
exDecl,V(’x) =
—-_—=>

s(0)

***x rule OpR
exDecl,V(’x)
—

s(0)

s(0)

s(0)

s(0)

s(0)

s(0)

s(0)

Ap(-, s(0), s(0)) =0

*x* rule VarR

V(x)

Equal(V(’x), 0)

V(x)

V(x)

s(0)

V(’x) - s(0)

exDecl1,V(’x) =0 |- V(’x)

-—>
0
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*x* rule CR (10)
exDec1,V(’x) =0 |- 0

-—>

0

*+* rule EqR1 (11)
exDecl,V(’x) = 0 |- Equal(V(’x), 0)

-—

T

*+* rule CR (12)
exDecl1,V(’x) = 0 |- s(0)

-—

s(0)

**x*% rule IfR1 (13)

exDec1,V(’x) = 0 |- If Equal(V(’x), 0) Then s(0)
Else V(’x) * FV(’Fac) (V(’x) - s(0))

*x* rule FunR (14)
exDecl,V(’x) = s(0) |- FV(°Fac)(V(’x) - s(0))

—>

s(0)

*xx rule OpR (15)
exDecl,V(’x) = s(0) |- V(’x) * FV(’Fac) (V(’x) - s(0))

—>

Ap(x, s(0), s(0)) = s(0)

**x rule IfR2 (16)
exDecl,V(’x) = s(0) |- If Equal(V(’x), 0) Then s(0)
Else V(’x) * FV(’Fac) (V(’x) - s(0))
—-—
s(0)

*x* rule FunR (17)
exDecl,mt |- FV(’Fac) (s(0))

—-—

s(0)

rewrites: 60 in Oms cpu (199ms real) (~ rewrites/second)
result Num: s(0)

We said above that the rule FunR corresponds to call-by-value. The alternative call-by-name does
not evaluate the parameters and simply substitutes them directly in the body of the definition. The
rule describing this behaviour is the following;:

D,pFelei/x1,...,e /T = a v L
FunR’ pEeler/Tn, e/ Th] =4 F(z1,...,25) < eisin D
D,pk F(ey,...,ex) =4 v
where a simultaneous substitution operation is used to substitute the expressions ei,...,e; in the
actual parameters for variables x1, ..., in an expression e.

The definition of this substitution operation ele’/v] has to take into account the peculiarities of
free and bound variables, to avoid the capture of variables, and in such a way that only free variables
are substituted. This substitution may have to introduce new variables that do not appear either
in e or in ¢/. The following functional module SUBSTITUTION defines this operation. In the case of
simultaneous substitution ele; /x1, ..., e /x|, we assume that the substituted variables only occur in
e, so it is reduced to several simple substitutions.

The operation new, given a (finite) set of variables VS, returns a variable not in V.S. To obtain
this value variables z1, 22, etc., are tried until a variable not in the set is found. A new variable is
needed when substituting in a let expression that declares a variable also occurring in the substituting
expression.
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fmod SUBSTITUTION is
protecting FPL-SYNTAX .
protecting STRING .
protecting NUMBER-CONVERSION .

sort VarSet

op mt : -> VarSet

subsort Var < VarSet

op _U_ : VarSet VarSet -> VarSet [assoc comm id: mt]
eq x U x = x . *xx idempotency

*x*% FVar returns the set of free variables in an expression.
op FVar : Exp -> VarSet

op FVar : BExp -> VarSet

op FVar : ExpList -> VarSet

op _in_ : Var VarSet -> Bool .

op _not-in_ : Var VarSet -> Bool .
op _\_ : VarSet VarSet -> VarSet
op new : VarSet -> Var .

op new : VarSet Nat -> Var .

op newvar : Nat -> Var .

var n : Num .

vars x y x’ : Var .
vars e e’ el e2 : Exp .
var op : Op .

var F : FunVar .

var bx : BVar .

vars be bel be2 : BExp .
var bop : BOp .

var el : ExpList

vars VS VS’ : VarSet
var N : Nat

var x1 : VarList

eq FVar(n) = mt .

eq FVar(x) = x .

eq FVar(el op e2) = FVar(el) U FVar(e2)

eq FVar(If be Then el Else e2) = FVar(be) U FVar(el) U FVar(e2)
eq FVar(let x = e in e’) = (FVar(e’) \ x) U FVar(e)
eq FVar(F(el)) = FVar(el)

eq FVar(e,el) = FVar(e) U FVar(el)

eq FVar(T) = mt

eq FVar(F) = mt

eq FVar(Not be) = FVar(be)

eq FVar(bel bop be2) = FVar(bel) U FVar(be2)

eq FVar(bx) = mt

eq FVar(Equal(el,e2)) = FVar(el) U FVar(e2)

eq x in mt = false .
eq x in (y U VS) = (x == y) or (x in VS)

eq x not-in VS = not (x in VS)

eq (mt \ VS’) = mt .

eq (y UVS) \ VS’ = if (y in VS’) then VS \ VS’
else y U (VS \ VS’) fi .

eq newvar(N) = V(qid("z" + string(N,10)))

eq new(VS) = new(VS, 1)

eq new(VS, N) = if newvar(N) not-in VS then newvar(N)
else new(VS, N + 1) fi
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**x substitution of an expression for a variable
op _[_/_] : Exp Exp Var -> Exp .

op _[_/_] : BExp Exp Var -> BExp .

op _[_/_] : ExplList Exp Var -> Explist .

eqy [e” / x] = if x == y then e’ else y fi .

eqn [e’ / x] =n .
eq (el op e2) [e’ / x] = (el [e’ / x]) op (e2 [e’ / x]) .

eq (If be Then el Else e2) [e’ / x] =
If (bele’ / x]) Then (ei[e’ / x]) Else (e2[e’ / x]) .

eq (let x = el in e2) [e’ / x] = let x = (el [e’ / x]) in e2 .
ceq (let y = el in e2) [e’ / x] =

let y = (el [e’ / x]) in (e2 [e’ / x1)

if x =/=y /\ y not-in FVar(e’) .
ceq (let y = el in e2) [e’ / x] =

let x> = (el [e’ / x]) in ((e2[x’ / y1) [e’ / x1)

if x =/=y /\ y in FVar(e’) /\

x’ := new(FVar(e’) U FVar(e2)) .

eq F(el) [e’ / x] = F(el [e’ / x]) .
eq (e, el) [e’ / x] = (ele’ / x1), (elle’ / x1) .

eqT [e /x] =T .
eqF [e /x] =F .

eq bx [e’ / x] = bx .

eq (bel bop be2) [e’ / x] = (bel [e’ / x]) bop (be2 [e’ / x]) .

eq (Not be) [e’ / x] = Not (bele’ / x])

eq Equal(el,e2) [e’ / x] = Equal(elle’ / x],e2[e’ / x]) .

**%* multiple simultaneous substitution

op _[_/_1 : Exp ExpList VarList -> Exp .

eqe [e’, el / x, x1] = (e [e’ / x])[el / x1]
endfm

Once the substitution is defined, we can write the rewrite rule that implements call-by-name:

***x call-by-name

crl [FunR’] : D,rho |- F(el) => v
if F(xl)<= e & D’ :=D /\ D,rho |- (elel / x1]) => v .

We can test this semantics with the program (Rem(3,5), D), evaluated by the next command:
Maude> rew exDecl, mt |- FV(’Rem) (s(s(s(0))), s(s(s(s(s(0)))))) .

rewrites: 234 in Oms cpu (lms real) (~ rewrites/second)
result Num: s(s(0))

We can also trace the evaluation of Fac(1), to check how the computation of an expression is
affected by this change. The corresponding derivation tree is shown in Figure 5.
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Figure 5: Derivation tree for Fac(1) (call-by-name).



Maude> rew exDecl, mt

**xx rule CR
exDecl,mt |- s(0)
_—

s(0)

**x*% rule CR
exDecl,mt |- O
-—>

0

**x* rule EqR2

|- FV(°Fac) (s(0))

exDecl,mt |- Equal(s(0), 0)

-—>
F

**x*% rule CR
exDecl,mt |- s(0)
—-—

s(0)

**x*% rule CR
exDecl,mt |- s(0)
—-—

s(0)

**xx rule CR
exDecl,mt |- s(0)
—_—

s(0)

*xx rule OpR

exDecl,mt |- s(0) - s(0)

-—
Ap(-, s(0), s(0)) =0
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*xx rule CR (8)
exDecl,mt |- O

—-—>

0

*x* rule EqR1 (9)
exDecl,mt |- Equal(s(0) - s(0), 0)
—-—

T

*xx rule CR (10)
exDecl,mt |- s(0)

—_—

s(0)

*xx rule IfR1 (11)

exDecl,mt |- If Equal(s(0) - s(0), 0) Then s(0) Else
(s(0) - s(0)) * FV(’Fac) ((s(0) - s(0)) - s(0))

*x* rule FunR’ (12)
exDecl,mt |- FV(’Fac)(s(0) - s(0))

*x% rule OpR (13)
exDecl,mt |- s(0) * FV(’Fac)(s(0) - s(0))

-—

Ap(x, s(0), s(0)) = s(0)

*** rule IfR2 (14)
exDecl,mt |- If Equal(s(0), 0) Then s(0)
Else s(0) * FV(’Fac)(s(0) - s(0))

*** rule FunR’ (15)
exDecl,mt |- FV(’Fac) (s(0))

rewrites: 65 in Oms cpu (158ms real) (~ rewrites/second)
result Num: s(0)

3.3 Computation semantics

In this section we implement a computation (or small step) semantics for the language Fpl that
describes the sequence of primitive operations that the evaluation of an expression gives rise to. As in
the evaluation semantics, variable environments and function declarations are needed. The semantic
judgements to evaluate arithmetic and Boolean expressions are D,pt e —4 ¢ and D,p F be —p
be'. The semantic rules that define these judgements for — 4 and — g are shown in Figure 6 and 7,
respectively.

In the implementation of this semantics we use the module FPL-SYNTAX given in Section 3.1,
although with some modifications. For expressing with easiness and clarity the rule FunRc in Figure 6,
we need that the operation for building lists of expressions has as identity element the empty list, as
we shall see:

subsort Exp < ExpList .

op nil : -> ExpList .
op _,_ : ExpList ExpList -> ExpList [assoc id: nil prec 30]

The modules AP, ENV, and SUBSTITUTION are used without modification. The following module
COMPUTATION contains the implementation of the new semantic rules. The same techniques as in the
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VarRc

OpRec

IfRc

LocRe

FunRec

BVarRec

BOpRec

NotRe

EqRc

D.pt @ —a pla)

Dap ) op v’ —A Ap(Op,U,U/)

D,pbe—4€” D,pke —a€”

D,pteope — e ope D,pteope —4eope”

D,pt be —p be’
D, pFIf be Then e Else e/ — 4 If be’ Then e Else €’

D,pEHIf T Thene Elsee! — 4 e D,pFIf F Then e Else ¢/ — 4 ¢’

D,pre—ae”

D,ptletz=cine — letx=¢"ine D,ptletz=vine —4 e[v/z]

D,pkei—acel

D,pk F(e1,...,€iy...,ex) —a Fley,... el ... ex)

K2

F(x1,...,2;) < eisin D
DapFF(’Ula"'vvk) —A e[vl/xlv"'vvk/zk] ( ! )

Figure 6: Computation semantics for Fpl, — 4.

D,pt bz —p p(bx)

D, pt bv bop bv' — g Ap(bop, bv, bv')

D,pt be —p be” D,pt be/ —p be"
D, pt be bop be’ — 5 be” bop be’ D, pt be bop be’ — 5 be bop be”
D,pt be —p be’

D, p+ Not be — 5 Not be’ D,pFNotT—pF D,pFNotF —pT
D,pte—ae D,pke —ae

D, pt Equal(e,e’) — p Equal(e”, e’) D, pt Equal(e,e’) — p Equal(e’, e”)
v=1 v # v

D, pt Equal(v,v') —p5 T D, pt Equal(v,v') —p F

Figure 7: Computation semantics for Boolean expressions, — p.
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previous section are used. Note how the rule FunRc1 expresses the non-deterministic choice of one of
the arguments to be rewritten, by means of the pattern matching between the list of arguments and
the pattern el,e,el’ modulo associativity and identity (the empty list). This pattern also includes
the cases with one or two arguments, which are handled by making empty some of the lists.

mod COMPUTATION is
protecting AP . protecting ENV . protecting SUBSTITUTION .

sort Statement
subsorts Num Boolean < Statement

op _,_|-_ : Dec ENV Exp -> Statement [prec 40]

op _,_|-_ : Dec ENV BExp -> Statement [prec 40]

vars D D’ : Dec . var rho : ENV . vars e e’ e’’ : Exp .
var bx : BVar . vars v v’ : Num . vars bv bv’ : Boolean .
var op : Op . var x : Var . vars be be’ be’’ : BExp .
var x1 : VarList . var vl : NumList . vars el el’ : ExpList
var bop : BOp . var F : FunVar .

*%*% computation semantics for Fpl
rl [VarRc] : D,rho |- x => rho(x)
rl [OpRcl] : D,rho |- v op v’ => Ap(op,v,v’)

crl [OpRc2] : D,rho |- e op e’ => e’’ op e’

if D,tho |- e =>¢e’’ .
crl [OpRc3] : D,rho |- e op e’ => e op e’’
if D,rho |- e’ => e’

crl [IfRcl] : D,rho |- If be Then e Else e’ => If be’ Then e Else e’
if D,rho |- be => be’

rl [IfRc2] : D,rho |- If T Then e Else e’ => e .

rl [IfRc3] : D,rho |- If F Then e Else e’ => e’

crl [LocRcl] : D,rho |- let x = e in e’ => let x = e’’ in e’
if D,tho |- e =>¢e’’ .
rl [LocRc2] : D,rho |- let x = v in e’ => e’[v / x]

crl [FunRcl] : D,rho |- F(el,e,el’) => F(el,e’,el’)

if D,rho |- e => &’
crl [FunRc2] : D,rho |- F(vl) => el[vl / x1]
if F(xl)<= e & D’ :=D .

*** computation semantics for boolean expressions
rl [BVarRc] : D,rho |- bx => rho(bx)

rl [BOpRcl] : D,rho |- bv bop bv’ => Ap(bop,bv,bv’)
crl [BOpRc2] : D,rho |- be bop be’ => be’’ bop be’
if D,rho |- be => be’’
crl [BOpRc3] : D,rho |- be bop be’ => be bop be’’
if D,rho |- be’ => be’’

crl [NotRcl] : D,rho |- Not be => Not be’
if D,rho |- be => be’

rl [NotRc2] : D,rho |- Not T => F .

rl [NotRc3] : D,rho |- Not F => T .

crl [EqRcl] : D,rho |- Equal(e,e’) => Equal(e’’,e’)

if D,rho |- e => e’

crl [EqRc2] : D,rho |- Equal(e,e’) => Equal(e,e’’)
if D,rho |- e’ => e’

crl [EqRc3] : D,rho |- Equal(v,v’) =>T
if v == v’
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crl [EqRc4] : D,rho |- Equal(v,v’) =>F
if v =/= v’ .
endm

We can use this implementation of the computation semantics for evaluating the expression
Rem(3,5), considered in the previous section.

Maude> rew exDecl, mt |- FV(’Rem) (s(s(s(0))), s(s(s(s(s(0)))))) .
rewrites: 65 in Oms cpu (lms real) (° rewrites/second)
result Exp: If Equal(s(s(s(0))), s(s(s(s(s(0)))))) Then O
Else If Equal(s(s(s(s(s(0))))) - s(s(s(0))), 0) Then s(s(s(s(s(0)))))
Else FV(’Rem) (s(s(5(0))),s(s(s(s(s(0))))) - s(s(s(0))))

What we have obtained is the resulting expression after the first step. Although the module
COMPUTATION is admissible, we cannot use it directly, in an easy way, to know to which final value an
expression is evaluated. The reason is that, since we are working now with a computation semantics,
each rule (or rewrite) represents one step. The righthand sides of the rewrite rules are expressions,
although the lefthand sides are terms of sort Statement with a set of declarations, an environment,
and an expression. In this way, the application of these rules cannot be concatenated by using the
transitivity rule of rewriting logic, since once we apply a rule the resulting term does no longer match
the lefthand side of any rule. (On the other hand, this structure of their lefthand side ensures that
the rules are only applied at the top, thus avoiding undesired rewrite steps inside expressions, for
example.)

We can solve this problem by implementing the reflexive, transitive closure of transitions — 4
and — p. Consider the first one; if we implemented it as follows:

rl [zero] : D,rho |- v => v . *** no step
crl [more] : D,rho |- e => v
if D,rho |- e => &’ *x** one step

/\ D,rho |- e’ => v . *** all the rest

then we would have executability problems, since the rules zero and more themselves could be used
to try to resolve the first condition of rule more, giving rise to infinite loops.

To avoid this problem, we use different constructors to build the terms in the lefthand side of these
rules. In this way, we control which rules can be applied to resolve each one of the conditions.

op _,_|=_ : Dec ENV Exp -> Statement [prec 40]
op _,_|=_ : Dec ENV BExp -> Statement [prec 40] .
rl [zero] : D,rho |=v => v .
crl [more] : D,rho |=e => v
if D,rho |- e => e’ /\ D,rho |=¢e’ => v .
rl [zero] : D,rho |= bv => bv .
crl [more] : D,rho |= be => bv

if D,rho |- be => be’ /\ D,rho |= be’ => bv .

Now we can use the complete implementation for evaluating the expression Rem(3,5).
Maude> rew exDecl, mt |= FV(’Rem) (s(s(s(0))), s(s(s(s(s(0)))))) .

rewrites: 181 in Oms cpu (1ms real) (~ rewrites/second)
result Num: s(s(0))

We can also show the trace produced when Fac(1) is evaluated. To simplify we only show transi-
tions of the relations — 4 and —p, and we have removed the applications of rule zero (once) and
rule more (8 times), at the end of the trace.

Maude> rew exDecl, mt |= FV(’Fac)(s(0)) .

***x rule FunRc2
exDecl,mt |- FV(’Fac) (s(0))
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—-—=>
If Equal(s(0), 0) Then s(0) Else s(0) * FV(’Fac)(s(0)) - s(0))

*x% rule EqRc4

exDecl,mt |- Equal(s(0), 0)
-—=>

F

*x*x rule IfRcl

exDecl,mt |- If Equal(s(0), 0) Then s(0) Else s(0) * FV(’Fac)(s(0) - s(0))
—-—

If F Then s(0) Else s(0) * FV(’Fac) (s(0) - s(0))

**x* rule IfRc3

exDecl,mt |- If F Then s(0) Else s(0) * FV(’Fac)(s(0) - s(0))
—>

s(0) * FV(’Fac) (s(0) - s(0))

*x% rule OpRcl

exDecl,mt |- s(0) - s(0)
—-——=>

Ap(-, s(0), s(0)) =0

**%*% rule FunRcl

exDecl,mt |- FV(’Fac)(s(0) - s(0))
—-—>

FV(’Fac) (nil,0,nil)

***x rule OpRc3

exDecl,mt |- s(0) * FV(’Fac)(s(0) - s(0))
—-—>

s(0) * FV(’Fac) (0)

***x rule FunRc2

exDecl,mt |- FV(’Fac) (0)

—-—=>

If Equal(0, 0) Then s(0) Else 0 * FV(’Fac)(0 - s(0))

*x% rule OpRc3

exDecl,mt |- s(0) * FV(’Fac) (0)

—-—

s(0) * (If Equal(0, 0) Then s(0) Else O * FV(’Fac) (0 - s(0)))

***x rule EqRc3
exDecl,mt |- Equal(0, 0)
—-——=>

T

**x*x rule IfRcl

exDecl,mt |- If Equal(0, 0) Then s(0) Else O * FV(’Fac)(0 - s(0))
—-—=>

If T Then s(0) Else (0).Num * FV(’Fac) (0 - s(0))

*x* rule OpRc3

exDecl,mt |- s(0) * (If Equal(0, 0) Then s(0) Else 0 * FV(’Fac)(0 - s(0)))
-—=>

s(0) * (If T Then s(0) Else O * FV(’Fac) (0 - s(0)))

**x*x rule IfRc2

exDecl,mt |- If T Then s(0) Else O * FV(’Fac) (0 - s(0))
-—>

s(0)

*** rule OpRc3

exDecl,mt |- s(0) * (If T Then s(0) Else 0 * FV(’Fac) (0 - s(0)))
—-—>

24



Dpte—a€”

LocR
oehe D,pkletz=eine — letx=¢"in¢
D,plv/x]Fe—a€
D,pFletz=vine —gletz=vine D,pFletz=vinv — v
D,pk e /

FunRec PTG A 7

D,ptFF(ei,...,€,...,ex) —a Fer,...,€,, ... ex)
F .o, xp) <=eisin D
D,pt F(v,...,v5) —aletzy =wvyin ... let xp =vg ine (@1, mp) = edsin
Figure 8: Modification of the rules without using substitutions.
s(0) * s(0)

*x% rule OpRcl
exDecl,mt |- s(0) * s(0)
-—>

Ap(x, s(0), s(0)) = s(0)

rewrites: 68 in Oms cpu (255ms real) (~ rewrites/second)
result Num: s(0)

The semantic rules in Figure 6 use the syntactic substitution of values for variables in an expression.
However, environments were precisely introduced with the purpose of keeping the bindings between
variables and values, so it could be preferable not hiding part of this goal by using substitutions. One
way of removing the use of substitutions is to define the semantic rules LocRc and FunRc as it is done
in Figure 8.

The following rewrite rules implement these new semantic rules. We have used an auxiliary op-
eration buildLet to build the result expression in the second rule FunRc. Specifically, the operation
buildLet takes as arguments a list z1,...,x, of variables, a list vy,...,v, of values such that v; is
the value to which variable xz; has to be bound, and an expression e, and it returns the expression
let x1 =wv1in ... let zp = vg in e. The following equations define it recursively on the received lists.

op buildLet : VarList NumList Exp -> Exp .

eq buildLet(nil, nil, e) = e .

eq buildLet(x, v, e) = let x = v in e .

eq buildLet((x, x1), (v, vl), e) = let x = v in buildLet(x1l, vl, e)

crl [LocRcl] : D,rho |- let x = e in e’ => let x = e’’ in e’
if D,rho |- e => ¢’

crl [LocRc2] : D,rho |- let x = v in e => let x = v in e’
if D,rholv / x] |- e => ¢’

rl [LocRc3] : D,rho |- let x = v in v’ => v’

crl [FunRcl] : D,rho |- F(el,e,el’) => F(el,e’,el’)

if D,rho |- e => &’
crl [FunRc2] : D,rho |- F(vl) => buildLet(xl, vl, e)
if F(xl)<= e & D’ :=D .

We can evaluate again the expression Rem(3,5) with the new semantics. The result obviously
coincides with the one obtained previously.

Maude> rew exDecl, mt |= FV(’Rem) (s(s(s(0))), s(s(s(s(s(0))))))

rewrites: 527 in Oms cpu (9ms real) (~ rewrites/second)
result Num: s(s(0))
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1. Syntactic categories

st € States C € Control v € Num
S € Stack env € FEnv bv € Boolean
a € Assoc cons € Constants F e FunVar

2. Definitions

st = (S,env,C)

S u= e|v.S|b.S

C == eleC]|cons.C
cons == op|bop| (x,e)|if(e,e’) | not|equal | F | pop
env = ¢|a.env

a == (x,v) | (bz,bv) | (F,(z,e))

v = n

bv == T|F

Figure 9: States of the abstract machine for Fpl.

Opml (S env,e op ¢'.Cy — (S, env,e.e’.op.C)

(S, env, be bop be'.C') — (S, env, be.be .bop.C')
Ifm1 (S, env, If be Then e Else ¢/.C') — (S, enwv, be.if(e, e’).C)
Locml (S,env,let x = e in €'.C) — (S, env,e.(x,e').C)
Funml (S, env, F(e).C) — (S, env,e.F.C)
Notml (S, env, Not be.C) — (S, env, be.not.C)

Eqml (S, env,Equal(e,e’).C) — (S, env, e.e’ .equal.C)

Figure 10: Analysis rules for the abstract machine.

3.3.1 Abstract machine for Fpl

In this section we present a concrete operational semantics for Fipl based on an abstract machine. We
obtain in this way a formal interpreter of the language that is executed in a virtual machine. The
states of this machine are tuples (S, env,C), where S is a stack of values, env is an environment (a
finite list of bindings between variables and values, in this case), and C' is a control sequence. The
abstract syntax of these states is shown in Figure 9.

To describe how the machine works, it is enough to define a relation — between states,

(S,env,C) — (S end’,C").

The semantic rules that define this relation are shown in Figures 10 and 11.

The rules Varm and Funm?2 use in their premises predicates like env,z + v to point out that
v is the value associated to variable x in the environment env. We do not show the obvious defi-
nition of these predicates, that will be implemented by means of operations lookup in the module
ABS-MACHINE-SEMANTICS below.

The following functional module ABS-MACHINE-SYNTAX defines the syntax of the states of the
abstract machine.

fmod ABS-MACHINE-SYNTAX is
protecting AP .

*** states of the abstract machine for Fpl

sorts Constants Assoc Env Stack Control States .
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Opm2 (V0.8 env,op.C') — (Ap(op,v,v’).S, env, C)
(bv'.bv.S, env, bop.C') — (Ap(bop, bv, bv').S, env, C')

Va env,x F v env, br F bv
rm

(S, env, 2.Cy — (v.S, env, C) (S, env, bx.C) — (bv.S, env, C)
Valm (S, env,v.C) — (v.S, env, C) (S, env,bv.C'y — (bv.S, env, C)
Notm2 (T.S,env,not.C') — (F.S,env, C) (F.S, env,not.C') — (T.S,env, C)

v="1 v # v
Eqm?2
(v.'.S, env,equal.C')y — (T.S, env, C) (v.v'.S, env,equal.C')y — (F.S, env, C)

Ifm2 (T.S,env,if(e,e’).C) — (S, env,e.C) (F.S,env,if(e,e').C) — (S, env, e’ .C)
Funm? env, F = (z,¢e)

(v.S,env, F.C'y — (S, (z,v).env, e.pop.C')

Locm2  (v.S,env, (z,e).C') — (S, (z,v).env, e.pop.C)

Pop (S, (z,v).env, pop.C") — (S, env, C)

Figure 11: Application rules for the abstract machine.

op < > : Stack Env Control -> States [prec 60]
op mtS : -> Stack .

op _._ : Num Stack -> Stack .

op _._ : Boolean Stack -> Stack .

op mtC : -> Control .

op _._ : Exp Control -> Control [prec 50]
op _._ : BExp Control -> Control [prec 50]
op _._ : Constants Control -> Control [prec 50]

subsort Op BOp < Constants .

op <_,_> : Var Exp -> Constants .
op if : Exp Exp -> Constants .

op not : -> Constants .
op equal : -> Constants .
op pop : -> Constants .

subsort FunVar < Constants .

op mtE : -> Env .
subsort Assoc < Env .

op _._ : Env Env -> Env [assoc id: mtE]

op ‘(_,_¢) : Var Num -> Assoc .

op ‘(_,_¢) : BVar Boolean -> Assoc .

op ‘(_,_,_°) : FunVar Var Exp -> Assoc .
endfm

The system module ABS-MACHINE-SEMANTICS implements the analysis rules and application rules
of the abstract machine. Note that the rules in this module do not use rewrites in the conditions,
since the semantic rules in Figures 10 and 11 do not have premises with transitions.

mod ABS-MACHINE-SEMANTICS is
protecting ABS-MACHINE-SYNTAX .

op lookup : Env Var -> Num .
op lookup : Env BVar -> Boolean .
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op lookup : Env FunVar -> Constants
vars x x’ : Var .

vars v v’ : Num .

vars bx bx’ : BVar .

vars bv bv’ : Boolean .

vars FV FV’ : FunVar .

vars e e’ : Exp .

var op : Op .

var bop : BOp .
var be be’ : BExp .
var env : Env .
var S : Stack .
var C : Control

€q
eq
€q

eq
€q
€q

€q
€q
eq

lookup((x’,v) . env, x) = if x == x’ then v else lookup(env,x) fi .

lookup((bx, bv) . env, x) = lookup(env, x)
lookup((FV,x’,e) . env, x) = lookup(env, x)

lookup((x,v) . env, bx) = lookup(env,bx)

lookup((bx’,bv) . env, bx) = if bx == bx’ then bv else lookup(env,bx) fi .

lookup((FV,x’,e) . env, bx) = lookup(env,bx)

lookup((x,v) . env, FV) = lookup(env,FV)
lookup((bx’,bv) . env, FV) = lookup(env,FV)
lookup((FV’,x’,e) . env, FV) =

if FV == FV’ then < x’, e > else lookup(env,FV) fi

*x*% Analysis rules for the abstract machine

rl [Opmi] : < S, env, e ope’ . C>=>< S, env, (¢ . e’ . op . C) >
rl [Opmi’] : < S, env, be bop be’ . C > =>< S, env, be . be’ . bop .
rl [Notml] : < S, env, Not be . C > =>< S, env, be . not . C > .
rl [Egmi] : < S, env, Equal(e,e’) . C > =>< S, env, e . e’ . equal .
rl [Ifm1] : < S, env, If be Then e Else ¢’ . C >

=> < S, env, be . if(e,e’) . C > .
rl [Funmi] : < S, env, FV(e) . C>=>< S, env, e . FV . C > .
rl [Locml] : < S, env, let x = e ine’ . C>=>< S, env, e . < x, e’
*** Application rules for the abstract machine
rl [Opm2] : <v’ . v . S, env, op . C > => < Ap(op, v, v’) . S, env,
rl [Opm2’] : < bv’ . bv . S, env, bop . C >

=> < Ap(bop, bv, bv’) . S, env, C > .
crl [Varm] : < S, env, x . C>=>< v . S, env, C >

if v := lookup(env, x)
crl [Varm’] : < S, env, bx . C > => < bv . S, env, C >
if bv := lookup(env, bx)

rl [Valm] : < S, env, v.C>=><v .S, env, C>
rl [Valm’] : < S, env, bv . C > => < bv . S, env, C > .
rl [Notm2] : < T . S, env, not . C>=><F . S, env, C > .
rl [Notm2’] : <F . S, env, not . C>=><T . S, env, C > .
crl [Eqm2] : < v . v’ . S, env, equal . C >=>< T . S, env, C > if v
crl [Eqm2’] : < v . v’ . S, env, equal . C > =>< F . S, env, C > if v
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rl [Ifm2 ] : < T . S, env, if(e,e’) . C>=>< S, env, e . C > .
rl [Ifm2’] : < F . S, env, if(e,e’) C>=><8S, env, e’ . C > .

crl [Funm2] : < v . S, env, FV . C > =>< S, (x, v) . env, e . pop . C >
if < x, e > := lookup(env,FV)

rl [Locm2] : <v . S, env, <x, e > . C>=><8, (x,v) . env, e . pop . C > .
rl [Pop] : < S, (x,v) . env, pop . C> =>< S, env, C > .

endm

By calculating the factorial of 1 we can see how the abstract machine works. The rewrites in this
semantics are completely deterministic, since there is no rewrite in conditions, there are not two rules
with the same lefthand side, and all rewrites are done at the top level. That is the reason why we
have modified the trace produced by Maude, in order to show this sequentiality. Moreover, we have
written decl instead of the complete declaration of function Fac, that we show in the command rew
introduced to Maude.

Maude> rew < mtS, (FV(’Fac), V(’°x), If Equal(V(’x),0) Then s(0)
Else V(’x) * FV(’Fac) (V(’x) - s(0))),
FV(’Fac) (s(0)) . mtC > .

< mtS, decl, FV(’Fac)(s(0)) . mtC >
-—-=> %% rule Funml
< mtS, decl, s(0) . FV(’Fac) . mtC >
--=> x%%x rule Valm
< s(0) . mtS, decil, FV(’Fac) . mtC >
-—-=> %% rule Funm2
< mtS, (V(’°x),s(0)) . decl, If Equal(V(’x), 0) Then s(0)
Else V(’x) * FV(’Fac)(V(°x) - s(0)) . pop . mtC >
-==> x%*x rule Ifml
< mtS, (V(’°x),s(0)) . decl, Equal(V(’x), 0) . if(s(0), V(’x) *
FV(°Fac) (V(’x) - s(0))) . pop . mtC >
---> %%k rule Eqml
< mtS, (V(’°x),s(0)) . decl, V(°x) . O . equal . if(s(0), V(’x) *
FV(°Fac) (V(’x) - s(0))) . pop . mtC >
-—-=> x%% rule Varm
< s(0) . mtS, (V(°x),s(0)) . decl, 0 . equal . if(s(0), V(’x) *
FV(°Fac) (V(’x) - s(0))) . pop . mtC >
-—-=> x%% rule Valm
<0 . s(0) . mtS, (V(’x),s(0)) . decl, equal . if(s(0), V(’x) *
FV(°Fac) (V(’x) - s(0))) . pop . mtC >
--=> %%k rule Eqm2’
<F . mtS, (V(’x),s(0)) . decl, if(s(0), V(’x) * FV(’Fac) (V(’x) - s(0)))
pop . mtC >
--=> x%*x rule Ifm2’
< mtS, (V(’°x),s(0)) . decl, V(°x) * FV(’Fac)(V(°’x) - s(0)) . pop . mtC >
--=> %%k rule Opml
< mtS, (V(’x),s(0)) . decl, V(°x) . FV(’Fac)(V(°x) - s(0)) . * . pop . mtC >
--=> x%%x rule Varm
< s(0) . mtS, (V(°x),s(0)) . decl, FV(’Fac)(V(’x) - s(0)) . * . pop . mtC >
--=> x%*x rule Funml
< s(0) . mtS, (V(°x),s(0)) . decl, V(°x) - s(0) . FV(°Fac) . * . pop . mtC >
--=> %%k rule Opml

< s(0) . mtS,(V(’x),s(0)) . decl, V(’x) . s(0) . - . FV(’Fac) . * . pop . mtC >
--=> x%%x rule Varm
< s(0) . s(0) . mtS, (V(°x),s(0)) . decl, s(0) . - . FV(’Fac) . * . pop . mtC >
--=> x%%x rule Valm
<s(0) . s(0) . s(0) . mtS, (V(’x),s(0)) . decl, - . FV(’Fac) . * . pop . mtC >

--=> x*k* rule Opm2

<0 . s(0) . mtS, (V(’x),s(0)) . decl, FV(°Fac) . * . pop . mtC >

--=> x¥*x rule Funm2

< s(0) . mtS, (V(°x),0) . (V(’x),s(0)) . decl, If Equal(V(’x), 0) Then
s(0) Else V(’x) * FV(’Fac)(V(°x) - s(0)) . pop . * . pop . mtC >
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1. Syntactic categories

p € Prog C € Com x € Var
op € Op bop € BOp bx € BVar
e € FEp be € BExp n € Num
2. Definitions
p = C
C == skip|z:=e|C';C"|If be Then C’ Else C” | While be Do C’
op = +|—|x
e == nlaxl|e ope’
bop == And|Or
be == bx|T|F|be bopbe” | Not be’ | Equal(e,e’)

Figure 12: Abstract syntax for Whilel.

—-—==> x%*x rule Ifml
< s(0) . mtS, (V(°x),0) . (V(°x),s(0)) . decl, Equal(V(’x), 0) .
if(s(0), V(°x) * FV(’Fac)(V(’x) - s(0))) . pop . * . pop . mtC >
--=> %%k rule Eqml
< s(0) . mtS, (V(°x),0) . (V(’x),s(0)) . decl, V(°x) . 0 . equal .
if(s(0), V(°x) * FV(’Fac)(V(’x) - s(0))) . pop . * . pop . mtC >
--=> x%% rule Varm
<0 . s() . mtS, (V(x),0) . (Vv(’x),s(0)) . decl, O .
equal . if(s(0), V(’x) * FV(’Fac)(V(’x) - s(0))) . pop . * . pop . mtC >
--=> x%% rule Valm
<0 .0 .s(0 .ms, (V(’x),0) . (V(°x),s(0)) . decl, equal .
if(s(0), V(°x) * FV(°Fac)(V(’x) - s(0))) . pop . * . pop . mtC >
--=> %%k rule Eqm2
<T . s(0) . mtS, (V(x),0) . (V(’x),s(0)) . decl, if(s(0), V(’x) *
FV(°Fac) (V(’x) - s(0))) . pop . * . pop . mtC >
—-—=> %% rule Ifm2
< s(0) . mtS, (V(°x),0) . (V(°x),s(0)) . decl, s(0) . pop . * . pop . mtC >
--=> xx%%x rule Valm
< s(0) . s(0) . mtS, (V(°x),0) . (V(°x),s(0)) . decl, pop . * . pop . mtC >
--=> %%k rule Pop
< s(0) . s(0) . mtS, (V(’x),s(0)) . decl, * . pop . mtC >
--=> %%k rule Opm2
< s(0) . mtS, (V(°x),s(0)) . decl, pop . mtC >
---> %k rule Pop
< s(0) . mtS, decl, mtC >

rewrites: 55 in Oms cpu (152ms real) (~ rewrites/second)
result States: < s(0) . mtS, decl, mtC >

4 The imperative language WhileL

In this section we present two operational semantics for a simple imperative programming language
called WhileL in [36]. A program is a sequence of commands that can modify the memory, which is a
collection of addresses where values are stored. As we have done for the functional language Fpl, we
first describe the implementation of an evaluation semantics for WhileL and then the implementation
of a computation semantics for the same language.

We also implement the semantics of the guarded command language GuardL in [36], which is a
generalization of the language WhileL obtained by allowing non-determinism.

4.1 Imperative syntax definition

The abstract syntax for the language WhileL is shown in Figure 12, and it is implemented in the
module WHILE-SYNTAX. Notice how the signature structure faithfully corresponds to the grammar
structure defined by the abstract syntax of the language. As we did for Fpl, we add the definition of
natural numbers.
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fmod WHILE-SYNTAX is
protecting QID .

sorts Var Num Op Exp BVar Boolean BOp BExp Com Prog .
op V : Qid -> Var .
subsort Var < Exp .

subsort Num < Exp .

op O : -> Num .
op s : Num -> Num .

ops + - * : => 0Op .
op ___ : Exp Op Exp -> Exp [prec 20]
op BV : Qid -> BVar .

subsort BVar < BExp .
subsort Boolean < BExp .

ops T F : -> Boolean .
ops And Or : -> BOp .
op ___ : BExp BOp BExp -> BExp [prec 20]

op Not_ : BExp -> BExp [prec 15]
op Equal : Exp Exp -> BExp .

op skip : -> Com .

op _:=_ : Var Exp -> Com [prec 30]

op _;_ : Com Com -> Com [assoc prec 40]

op If_Then_Else_ : BExp Com Com -> Com [prec 50]
op While_Do_ : BExp Com -> Com [prec 60]

subsort Com < Prog .

endfm

4.2 Evaluation semantics

The evaluation semantics for WhileL is given by means of three relations: =— 4, = p, and =,
corresponding to each one of the syntactic categories FEzp (arithmetic expressions), BExp (Boolean
expressions), and Com (commands). Environments are also used to keep the value of variables.
However, here the variables play a quite different role to that played in the functional language Fpl;
now they represent memory addresses and, as said above, computation proceeds by modifying the
contents of this memory. Therefore, although we reuse in the Maude code the same module ENV, we
use the “memory” terminology in the text.

The evaluation relation = 4 for arithmetic expressions takes a pair containing an expression and
a memory, and it returns a value, the result of evaluating the expression in this memory. The same
happens with the relation = p for Boolean expressions. Their definitions are shown in Figure 13.
The module EVALUATION-EXP implements both relations.

The sort Statement is used to describe the structure of a rule’s lefthand side, consisting of a
memory and an expression. Then Num and Boolean are made subsorts of Statement, thus ensuring
that both sides of a rule have a common sort.

mod EVALUATION-EXP is
protecting ENV .
protecting AP .

sort Statement
subsorts Num Boolean < Statement

op <_,_> : Exp ENV -> Statement .

op <_,_> : BExp ENV -> Statement
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CR _ VarR @—————F—
(n,s) =>an o (z,8) =>4 s(z)
(e,8) =>a v (e'ys) =>a 0
OPR o op e, 5) = a Aplop, 0,07
BCR —_ —_
(T,S) =T (F,S) —pF
BVark (bz,s) =B s(bx)
(be,s) =>p bv
BOBR (be', s) =B V'
P (be bop be’, s) =>p Ap(bop, bv, bv")
(e,s) =>a v (e,8) =>a v
BQR (e,5) = av (e8) —a
4 (Equal(e,e’),s) = T (Equal(e,e’),s) =B F
NotR (be,s) =B T (be,s) =B F

(Not be,s) =5 F

(Not be,s) =p T

v#£

Figure 13: Evaluation semantics for WhileL, — 4 and = p.

var n : Num .

var x : Var .

var st : ENV .

vars e e’ : Exp .

var op : Op .

vars v v’ : Num .

var bx : BVar .

vars bv bv’ : Boolean .
var bop : BOp .

vars be be’ : BExp .

**x* Evaluation semantics for expressions

rl [CR] : < n, st >=>n .

rl [VarR] : < x, st > => st(x)

crl [OpR] : < e op e’, st > => Ap(op,v,v’)
if < e, st > =>v /\

<e’, st >=v’

rl [BCR1] : < T, st > =>T .
rl [BCR2] : < F, st > => F .

rl [BVarR] : < bx, st > => st(bx)
crl [OpR] : < be bop be’, st > => Ap(bop,bv,bv’)

if < be, st > => bv /\
< be’, st > => bv’

crl [EqR1] : < Equal(e,e’), st > => T
if < e, st > => v /\
<e’, st >=>v.
crl [EqR2] : < Equal(e,e’), st > => F
if < e, st > => v /\
<e,st>=>v /\v=/=v

crl [Noti] : < Not be, st > => F
if < be, st >=>T .
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SkipR AsR

(Ca S) ==cC s’
(C¢) =cs"

ComR ey

(be,s) =p T
(Cv 5) ==cC s’
(If be Then C Else C7,s) =>¢ ¢

IfR

(be,s) =p F

WhileR
PR (While be Do O, 5) —¢ 5

(skip, s) =>¢ s (x:

(be,s) =p F
(C')s) =c ¢
(If be Then C Else C’,s5) =>¢ ¢’
(be,s) =p T
C’; While be Do C,s) =>¢ ¢’
( ) ) c

(While be Do C,s) =>¢ s’

Figure 14: Evaluation semantics for WhileL, —>¢.

crl [Not2] : < Not be, st > => T
if < be, st > =>F .

endm

The evaluation relation for commands = takes a pair containing a command and a memory
and it returns a new memory. Intuitively, the returned memory is the result of modifying the initial
memory by means of the executed command. In this way, a judgement (C,s) =>¢ s’ means that
when the command C is executed on the memory s, the execution finishes and the final state of the
memory is s’. The definition of the relation = is shown in Figure 14, and it is implemented in the

module EVALUATION-WHILE.

mod EVALUATION-WHILE is
protecting EVALUATION-EXP

subsort ENV < Statement .

op <_,_> : Com ENV -> Statement .
var x : Var .

vars st st’ st’’ : ENV .

var e : Exp .

var v : Num .

var be : BExp .

vars C C’ : Com .

*x* Evaluation semantics for WhileL

crl [AsR] : < x := e, st > => st[v / x]

if < e, st > =>v .
rl [SkipR] : < skip, st > => st .

crl [IfR1]
if

If be Then C Else C’, st > => st’
be, st > => T /\

C, st > => st’

If be Then C Else C’, st > => st’
be, st > => F /\

C’, st > => st’

crl [IfR2] :
if

crl [ComR] : < C ; C’, st > => st’’
if < C, st > => st’ /\
< C’, st? > => st”’

crl [WhileR1] : < While be Do C, st > => st
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(6, S) =AU

A
e e —c (kaps[o/a])
(C,s) —c (C",8) (C,s)y/ (C')s) —¢ (C")8)
ComRe (C;C"8) — ¢ (C";C7, ") (C; 0", 8) —¢ (O, 8)
IfRe (be,s) =p T (C,s) —c (O, ) (be,s) =p F (C',s) —c (C",8")
(If be Then C Else (', 5) —c (O, 5/ (If be Then C Else C7,5) —c (C7, 5')
WhileRe (be,s) =5 F

(While be Do C,s) —¢ (skip, s)

(be,s) =p T
(While be Do C, s) —¢ (C; While be Do C, s)

Figure 15: Computation semantics for Whilel, —¢.

if < be, st > =>F .
crl [WhileR2] : < While be Do C, st > => st’
if < be, st > =T /\
< C ; (While be Do C), st > => st’ .
endm

As an example of application of these rules let us consider the following program

z:=0;

While Not (Equal(z,0)) Do
zZ=z+4y,
ri=x—1

that calculates the product x * y and saves the result in z. We execute it starting with a memory s
where s(z) =2, s(y) = 3, and s(z) = 1.

Maude> rew < V(’z) := 0 ;
(While Not Equal(V(’x), 0) Do
V(©z) :=V(Cz) + VCy) ;
VOx) :=V(Cx) - s(0)),
VCOx) = s(s(0)) VCy) = s(s(s(0))) V(’z) = s(0) > .
rewrites: 267 in Oms cpu (630ms real) (~ rewrites/second)
result ENV: V(°x) = 0 VC’y) = s(s(s(0))) V(’z) = s(s(s(s(s(s(0))))))

4.3 Computation semantics

The basic commands in WhileL are assignments that modify the memory by changing the value
associated to a variable. A computation semantics for WhileL has to describe the basic operations
that each command can make, and in which order they are made. The judgement (C,s) —¢ (C',s")
means that the command C' can execute a basic operation that changes the memory from s to &,
being C’ the remainder of C' that has still to be executed.

In this section we assume that we are not interested in how arithmetic and Boolean expressions
are computed, so we do not define relations — 4 and — g, using instead the evaluation relations
=>4 and = p in the previous section. The rules defining the relation — ¢ for commands are shown
in Figure 15, where (C,s),/ indicates that the execution of command C has finished. The definition
of this termination predicate is shown in Figure 16.

The implementation of these semantic rules is shown in the module COMPUTATION-WHILE below.
The termination predicate has also been implemented by means of rules, that rewrite a pair containing
a command and a memory to the constant Tick. Rewrite rules are needed instead of equations, because
the predicate definition uses transitions in the premises of rules IfRt in Figure 16.
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Skipt ComRt (C,5)V (C',8)y/

(skip, s)/ (C;:C7,s5)y
IRt (be,s) =p T (C,s)y/ (be,s) =p F (C')8)y/
(If be Then C Else C’, s)/ (If be Then C Else C7, s)/

Figure 16: Termination predicate for WhileL.

mod COMPUTATION-WHILE is
protecting EVALUATION-EXP

op <_,_> : Com ENV -> Statement
sort Statement?2

op ‘(_,_¢) : Com ENV -> Statement2
op Tick : -> Statement2 .

var x : Var .

vars st st’ : ENV .
var e : Exp .

var v : Num .

var be : BExp .

vars C C> C’’ : Com .

**x* Computation semantics for WhileL

crl [AsRc] : < x := e, st > => < skip, stlv / x] >
if < e, st > =>v .

crl [IfRci1] < If be Then C Else C’, st > => < C’’, st’ >
if < be, st > =T /\
<C, st >=><C, st> > /\ C=/=2C"
crl [IfRc2] : < If be Then C Else C’, st > => < C’’, st’ >
if < be, st > => F /\
<C’, st>=><C, st”>/\C =/=C

crl [ComRcl] : < C ; C’, st > =>< C’’ ; C’, st’ >
if < C, st >=><C’’, st’> > /\ C=/=C"
crl [ComRc2] : < C ; C’, st > =>< C’’, st’ >
if ( C, st ) => Tick /\
<C, st>=><C7, st’>>/\C =/=C"

crl [WhileRc1] : < While be Do C, st > => < skip, st >
if < be, st > =>F .

crl [WhileRc2] : < While be Do C, st > => < C ; (While be Do C), st >
if < be, st > =>T .

*** Termination predicate for WhileL

rl [Skipt] : ( skip, st ) => Tick .

crl [IfRt1]
if

If be Then C Else C’, st ) => Tick
be, st > => T /\

C, st ) => Tick .

If be Then C Else C’, st ) => Tick
be, st > => F /\

C’, st ) => Tick .

(
<
(
crl [IfRt2] : (
if <
(
crl [ComRt] : ( C ; C’, st ) => Tick

if ( C, st ) => Tick /\

(C, st ) => Tick .

endm
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Note how in rule IfRcl, for example, the condition C =/= C’’ is used. This is needed here
because the resolution of condition < C, st > => < C’’, st’ > means rewriting < C, st > zero or
more times until the pattern < C’’, st’ > is matched. Since C’’ and st’ are not bound before the
condition is solved, the first attempt consists in the zero rewrites case, which matches < C’?, st’ >.
To avoid this case (we want one step to be made) we require C =/= C’’.

We can execute the same example program from the previous section.

Maude> rew < V(z) := 0 ;
(While Not Equal(V(’x), 0) Do
V(Cz) :=V(Cz) + V(Cy) ;
VOex) :=V(Cx) - s(0)),
VCx) = s(s(0)) VCy) = s(s(s(0))) V(’z) = s(0) > .
rewrites: 299 in Oms cpu (826ms real) (- rewrites/second)
result Statement: < skip, V(’x) = 0 VCy) = s(s(s(0))) V(’z) = s(s(s(s(s(s(0)))))) >

The command rew applies rewrite rules (following its default strategy) until no more rule can be
applied. The obtained result corresponds to the value returned by the evaluation semantics, since
both semantics are deterministic.

Here we do not need to implement explicitly the reflexive, transitive closure of transition — ¢, as
we did in Section 3.3 for the computation semantics of Fpl, because now the lefthand and righthand
sides of the rewrite rules have the same form, so the application of rules can be concatenated. But
we can use the command rew [n] to see which is the obtained expression after the application of n
rules. For example, after two applications of rules, variable z has been set to 0 and the loop has been
unfolded once.

Maude> rew [2] < V(’z) := 0 ;
(While Not Equal(V(’x),0) Do
V(©z) :=V(Cz) + VCy) ;
VCx) :=V(Cx) - s(0)),
V(Cx) = s(s(0)) VCy) = s(s(s(0))) V(’z) = s(0) > .
rewrites: 70 in Oms cpu (lms real) (° rewrites/second)
result Statement: < V(’z) := V(’z) + V(Cy) ;
V(Ox) := V(Cx) - s(0) ;
(While Not Equal(V(’x), 0) Do
V(’z) :=V(Cz) + V(Cy) ; VCx) := V(x) - s(0)),
V(x) = s(s(0)) VCy) = s(s(s(0))) V(’z) =0 >

4.4 The language GuardL

In [36] it is also presented a generalization of the language WhileL that allows non-determinism,
called GuardL. This language was defined originally by Dijkstra in [24], where it was presented as a
convenient language for the development of programs and their verification. Non-determinism was
considered quite useful, since it allows the program designer to delegate some decisions that are next
taken into account by the programmer or compiler.

The abstract syntax of the language GuardL is shown in Figure 17. A new syntactic category of
guarded commands appears, whose elements have this general form:

bey — C1 O ... O bep — Cp.

The following module implements the syntax of GuardL, having the same structure of the corre-
sponding grammar.

fmod GUARDL-SYNTAX is
protecting QID .

sorts Var Num Op Exp BVar Boolean BOp BExp Com GuardCom Prog .
op V : Qid -> Var .

subsort Var < Exp .
subsort Num < Exp .
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1. Syntactic categories

p € Prog e € LEp
C € Com be € BExp
GC € GuardCom

2. Definitions

p == C
C u= skip|zi=e|C;C" |if GC fi | do GC od
GC == be—C|GC' OGC"
Figure 17: Abstract syntax for GuardL.
op z : —> Num .

op s : Num -> Num .

ops + - % : => 0Op .

op ___ : Exp Op Exp -> Exp [prec 20]
op BV : Qid -> BVar .

subsort BVar < BExp .
subsort Boolean < BExp .

ops T F : -> Boolean .
ops And Or : -> BOp .
op ___ : BExp BOp BExp -> BExp [prec 20]

op Not_ : BExp -> BExp [prec 15]
op Equal : Exp Exp -> BExp .

op skip : -> Com .
op _:=_ : Var Exp -> Com [prec 30]

op _;_ : Com Com -> Com [assoc prec 40]
op if_fi : GuardCom -> Com [prec 50]
op do_od : GuardCom -> Com [prec 60]

op _->_ : BExp Com -> GuardCom [prec 42]
op _[1_ : GuardCom GuardCom -> GuardCom [assoc prec 45]

subsort Com < Prog .
endfm

In a guarded command, the Boolean expression be; guards the corresponding command C;, which
will be executed only if the control “goes through the guard be;”, that is, be; is evaluated to true.
In the command if GC fi, only a command associated to a true guard will be executed. If no guard
is true, it is considered that an execution error has been produced. In the same way, the command
do GC od is a generalization of the command While. The guarded command GC' is executed in a
repeated way, while at least one of the guards is true. Termination takes place when all the guards are
false. These intuitive ideas are formalized in the computation semantics in Figure 18, that defines two
transition relations, — ¢ and — ¢, and uses the evaluation semantics in Figure 13 for arithmetic
and Boolean expressions.

To formalize the fact that all the Boolean guards of a guarded command are false, a failure predicate
is needed. This is defined in an inductive way in Figure 19. A termination predicate is also used, like
in the case of WhileL, although now it is even simpler, and it is defined in Figure 20.

The following module GUARDL-COMPUTATION implements the computation semantics for the lan-
guage GuardL.

mod GUARDL-COMPUTATION is
protecting ENV .
protecting AP .
protecting EVALUATION-EXP .
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(6, S) =AU

AsRe (x:=e,s) —¢ (skip, s[v/x])
(C,s) —c (C",8) (C,s)y/ (C')s) —¢ (C")8)
ComRe (& G 5) —c (€707, 5) (C:Cs) —c (O 5)
(GC,s) —qc (Cs)
Ike (f GC fi,s) —c (C, )
DoR (ch S) —GC (Cv 5) (GC, S) fazls
Y (do GC od, s) —c (Cido GC od, 5) (do GC od, ) —c (skip, )
(be,s) =p T
GCRe (be — C,s) —ao (C,s)
(GC1,s) —ae (C)9) (GCq,s) —ae (C8)
(GCy O GCs,8) — e (Cs) (GCy O GCs,8) — e (C,s)

Figure 18: Computation semantics for GuardL, — ¢ and —gc.

. y .
(be,s) =p F IR (GC, s) fails (GC', s) fails

HREL (be — C, s) fails (GC O GC,s) fails

Figure 19: Failure predicate for GuardL.

. LGy (Y
e VA (X5

Figure 20: Termination predicate for GuardL.
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op <_,_> : Com ENV -> Statement
op <_,_> : GuardCom ENV -> Statement

sort Statement2

op ‘(_,_“) : Com ENV -> Statement?2

op Tick : -> Statement2 .

op ‘(_,_¢) : GuardCom ENV -> Statement2
op fails : -> Statement2

var x : Var .

vars st st’ : ENV .

var e : Exp .

var op : Op .

vars v v’ : Num .

var be : BExp .

vars C C’ C’’ : Com .
vars GC GC’ : GuardCom .

*** Computation semantics for GuardL

crl [AsRc] : < x := e, st > => < skip, stlv / x] >
if < e, st >=>v .

crl [ifRc] : < if GC fi, st > => < C, st >
if < GC, st > => < C, st >

crl [ComRci] <C; C,st>=><C" ; C, st’ >
if < C, st >=><C, st> > /\ C=/=C"’
crl [ComRc2] : < C ; C’, st > =>< C’’, st’ >
if ( C, st ) => Tick /\
<C, st>=><C’, st’>>/\C =/=C

crl [doRc1] < do GC od, st > => < C ; (do GC od), st >
if < GC, st > => < C, st > .

crl [doRc2] : < do GC od, st > => < skip, st >
if ( GC, st ) => fails

crl [GCRcl] : < be -> C, st > => < C, st >
if < be, st > =>T .

crl [GCRc2] < GC [] GC’, st > => < C, st >
if < GC, st > => < C, st > .

crl [GCRc2] : < GC [] GC’, st > => < C, st >
if < GC’, st > => < C, st >

*x*k Failure predicate for GuardL

crl [IfRf1] : ( be -> C, st ) => fails
if < be, st > =>F .

crl [IfRf2] : ( GC [] GC’, st ) => fails
if ( GC, st ) => fails /\
( GC’, st ) => fails
*x*% Termination predicate for GuardL
rl [Skipt] : ( skip, st ) => Tick .
crl [ComRt] : ( C ; C’, st ) => Tick
if ( C, st ) => Tick /\

(C, st ) => Tick .
endm

Non-determinism appears by means of rules GCRc2 and GCRc3. They both have the same lefthand
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side, so when one of them can be applied, also the other one can, assuming both GC and ”GC’” have
a true guard.

The failure and termination predicates have been also implemented by means of rules, as in the
previous section. However, in this case, it is not necessary to use rewrite rules to define the termination
predicate, since the only rewrites in the conditions refer to the own predicate. In this way, we can
also define this predicate by means of a Boolean operation. Notice the use of the owise attribute to
define the predicate in all the cases in an easy way.

op (_,_)Tick : Com ENV -> Bool .
eq ( skip, st )Tick = true .
ceq ( C; C’, st )Tick = true
if ( C, st )Tick /\ ( C’, st )Tick .
eq ( C, st )Tick = false [owise]

When using this predicate, the rule ComRc2 has to be modified in the following way:

crl [ComRc2] : < C ; C’, st > =>< C’’, st’ >
if ( C, st )Tick /\ < C’, st > =>< C’’, st’> > /\ C’ =/=C"’ .

To illustrate this semantics we can execute the following command, borrowed from [36, page 133]:

do
r>0—-x=x—1;y:=y+1
O
r>2—-zrz=r—-2;y=y+1
od

If we start to execute this command in a memory s in which s(z) = 5 and s(y) = 0, and assuming
appropriate rules for the operation >, three different states can be reached. To ask Maude to show
all the final reachable states, we use the command search (with version =>+ to allow several steps to
find the desired term).

Maude> search
<do V(Cx) >0 => V(x) :=V(Cx) - s(0) ; VCy) :=V(Cy) + s(0)
[0 vCex) > s(s(0)) -> VCx) :=V(Cx) - s(s(0)) ; VCy) :=V(Cy) + s(0)
od,
V(x) = s(s(s(s(s(0))))) V(°y) = 0 > =>+ < skip, st:ENV > .
Solution 1 (state 25)

st =—=> V(Cx) = 0 VCy) = s(s(s(s(s(0)))))
Solution 2 (state 29)

st -=> V(x) = 0 VCy) = s(s(s(s(0))))
Solution 3 (state 38)

st —=> V(Cx) = 0 VQCy) = s(s(s(0)))

No more solutioms.

5 Mini-ML

In this section we implement the evaluation semantics (or natural semantics) for the functional lan-
guage Mini-ML as described by Kahn in [45]. The abstract syntax, such as it is defined in [45], is
presented in Figure 21. Notice how this syntax presentation is closer to the signature of an algebraic
specification. The syntax defines a A-calculus extended with products, if, let, and letrec. In an expres-
sion AP.E, P is a pattern, which is either an identifier, like the variable z, or a pair of patterns (P1, P2),
like the pattern (z, (v, 2)).

The Mini-ML syntax is implemented by means of the following module:

fmod MINI-ML-SYNTAX is
protecting QID .

sort Nats TruthVal Var .
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sorts
EXP, IDENT, PAT, NULLPAT

subsorts
EXP D NULLPAT, IDENT PAT > NULLPAT, IDENT
constructors
Patterns
pairpat : PATxPAT — PAT
nullpat — NULLPAT
FExpressions
number —  EXP
false —  EXP
true —  EXP
ident — IDENT
lambda : PATXEXP —  EXP
if : EXPxEXPxEXP — EXP
mlpair : EXPxEXP —  EXP
apply . EXPxEXP — EXP
let . PATXEXPxEXP — EXP
letrec . PATXEXPxEXP — EXP

Figure 21: Abstract syntax for Mini-ML.

op 0 : -> Nats .
op s : Nats -> Nats .

ops true false : -> TruthVal .
op id : Qid -> Var .
sorts Exp Value Pat NullPat Lambda .

subsorts NullPat Var < Pat .
op ) : -> NullPat .
op (_,_) : Pat Pat -> Pat .

op (_,_.) : Var Var -> Var .

subsorts TruthVal Nats < Value .
op (_,_) : Value Value -> Value .

subsorts Value Var Lambda < Exp .

op s : Exp -> Exp .

op _+_ : Exp Exp -> Exp [prec 20]

op not : Exp -> Exp .

op _and_ : Exp Exp -> Exp .

op if_then_else_ : Exp Exp Exp -> Exp [prec 22] .

op (_,_.) : Exp Exp -> Exp .

op __ : Exp Exp -> Exp [prec 20]

op \_._ : Pat Exp -> Lambda [prec 15] .

op let_=_in_ : Pat Exp Exp -> Exp [prec 25]

op letrec_=_in_ : Pat Exp Exp -> Exp [prec 25]
endfm

The Mini-ML semantics is defined in [45] by means of judgements of the form p - E = «, where E
in a Mini-ML expression, p is an environment, and « is the result of the evaluation of E in p. Functions
are handled like any other value; for example, they can be passed as parameters to other functions,
or returned as the value on an expression.

Semantic values are:

e integer values;
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p F number N = N p F true = true p F false = false
val_of

p F ident I — «
pFident I = «

pF AP.E = [AP.E, g]

pF E1— true pFEy= « pFE1 — false pFE3 =«
p Fif E1 then Es else E3 = « p Fif 1 then Es else E3 = «

pFEL =« pEE = (0
pF (B, E2) = (o, )
pEE1L = [AP.E, p1] pEEy = « p-P—akFE=/
pFEELEy= [

pEEs =« p-P—akE =0
pFlet P =EsinE; = (3

p-Pr—akFE =« p-P—akE =0
p Fletrec P = Eg in E; = 3

Figure 22: Evaluation semantics for Mini-ML.

e Boolean values true and false;
e closures like [AP.E, p], where P is a pattern, E is an expression, and p is an environment; and

e pairs of semantic values of the form («, 3), where of course a and 3 can also be pairs, giving rise
to trees of semantics values.

The semantic rules of Mini-ML, such as they are presented in [45], are shown in Figure 22.

The implementation of the environments and the semantic rules, except for the operator letrec
which is problematic and will be treated afterwards, is quite straightforward following the ideas already
described in the previous sections and is shown in the following modules. Again, the sort Statement
is used to describe the structure in each side of a rule, including as before the environment in the
lefthand side. The operation _|-val-of_ is used to obtain the value associated to an identifier in an
environment.

fmod ENV is
including MINI-ML-SYNTAX .
sort Pair .
op _->_ : Pat Value -> Pair [prec 10]

sort Env .
subsort Pair < Env .
op nil : -> Env .
op _*_ : Env Env -> Env [assoc id: nil prec 20]
op Clos : Lambda Env -> Value .
endfm

mod MINI-ML-SEMANTICS is
including ENV .

sort Statement .
op _|l-_ : Env Exp -> Statement [prec 40]
op _|l-val-of_ : Env Var -> Statement [prec 40]

subsort Value < Statement
vars RO RO1 : Env .
vars N M : Nats .

vars P P1 P2 : Pat .
vars E E1 E2 E3 : Exp .
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vars I X : Qid .
vars A B C : Value .

rl [number] : RO |- N => N .

crl [add] : RO |- E1 + E2 => C if
RO |[-E1=>A /\ RO |-E2=>B /\ C := sum(A,B)

op sum : Nats Nats -> Nats .
eq sum(O,N) = N .
eq sum(s(N),M) = s(sum(N,M))

rl [true] : RO |- true => true .
rl [false] : RO |- false => false .

rl [lambda] : RO |- \ P . E => Clos( \ P . E, RO)

crl [id] : RO |- id(I) => A
if RO |-val-of id(I) => A .

crl [if] : RO |- if E1 then E2 else E3 => A if
RO |- E1 => true /\ RO |- E2 => A .
crl [if] : RO |- if E1 then E2 else E3 => A if
RO |- E1 => false /\ RO |- E3 => A .

crl [pair] : RO |- ( E1, E2 ) => ( A, B ) if
RO |- E1=>A /\ RO |-E2=>B.

crl [app] : RO |- E1 E2 => B if
RO |- E1 => Clos( \ P . E, RO1) /\
RO |- E2 => A /\
(RO1 * P -> A ) |- E

I
\%

B .

crl [let] : RO |- let P = E2 in E1 => B if
RO |I-E2=>A /\ (RO *P ->A) |-E1L=>B.

***x set VAL_OF
rl [val_of] : RO * id(I) -> A |-val-of id(I) => A .

crl [val_of] : RO * id(X) -> B |-val-of id(I) => A
if X =/=1 /\ RO |- id(I) => A .

nn
vV Vv
QQ

crl [val_of] : RO * (P1, P2) -> (A, B) |-val-of id(I)
if RO * P1 -> A * P2 -> B |-val-of id(I)
endm

We evaluate now some of the expressions used as examples in [45]. For example, we can illustrate
the block structure of the language and the use of patterns with the following expression, which is
evaluated to 3.

let (z,y)

=(2,3)
in let (z,y) =

(y,z) inx
Maude> rew nil |- let ( id(’x), id(C’y) ) = ( s(s(0)), s(s(s(0))) )

in let ( id(’x), idCy) ) = ( id(C’y), id(’x) ) in id(’x)
result Nats: s(s(s(0)))

We can also use higher-order functions, like in

let succ = A\xv.x +1
in let twice = Af. \x.(f(f x))
in ((twice succ) 0)
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Maude> rew
nil |- let id(’succ) = (\ id(C’x) . (1d(Cx) + s(0)))
in let id(Ctwice) = (\ id(C’f) . (\ id(’x) . (EdCE) GEdC£) id(Cx)))))
in (( id(’twice) id(’succ)) 0) .
result Nats: s(s(0))

However, the semantic rule for the operator letrec cannot be implemented in a direct way, since
the rule

crl [letrec] : RO |- letrec P = E2 in E1 => B if
(RO *P ->A) |-E2=>A /\ (RO *P ->A) |-E1L=2B.

is not admissible due to the fact that the variable A in the first rewrite condition is a new variable
that appears both in the lethand side and in the righthand side of the rewrite condition, and thus its
value cannot be obtained by matching.

This requires to modify the (textbook) presentation of the semantic rule that defines this operator.
First, if we work with call-by-value, as we are doing here, it only makes sense to allow recursive
definitions of A-abstractions, because this kind of values is the only one for which we can guarantee
termination since a A-abstraction evaluates directly to a closure. For this case, Reynolds presents in
[58, page 230] the following rule for letrec with only one variable as parameter:

pE (Av.e)(Au.letrec v = Au.€e' ine) = a
phletrecv = u.e' ine= «

The intuitive idea is that in the premise the recursive definition has been unfolded once. Under
call-by-value, the argument (Au.letrec v = Au.e€’ in €’) can only be evaluated if it is a function, which
is then evaluated to a closure.

We have generalized this rule to the Mini-ML case, where we can have definitions with patterns:

pE (AP.E) E* = «
phletrecP =Ein E = «

where P and E have the same form (regarding nesting), E contains only A-abstractions, and E* has
the same form as E except that the body of each function has been substituted by a letrec, as we
have done in the previous (simple) case. The implementation in Maude, which is equivalent to the
corresponding formal definition of E*, is the following one:

op ex : Pat Exp Exp -> Exp .

eq ex(P, E, \ P’ . E1) = \ P’ . (letrec P = E in E1) .
eq ex(P, E, ( E1, E2 )) = ( ex(P, E, E1), ex(P, E, E2) ) .

crl [letrec] : RO |- letrec P = E in E’> => A
if RO |- (\ P . E’) ex(P, E, E) => A .

Now we are ready to evaluate other examples in [45]:

letrec (even,odd) = (Az.if x =0 then true else odd(x — 1),
Az .if z = 0 then false else even(z — 1))
in even(3).

Maude> rew
nil |- letrec (id(’even), id(’odd)) =
C (\ 1dCx) . (Af (id(’x) = 0) then true
else (id(Podd) (id(’x) - s(0))))),
(\ id(’x) . (if (id(’x) = 0) then false
else (id(’even) (id(’x) - s(0)))))
)
in id(’even) s(s(s(0))) .
result TruthVal: false
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Figure 23: CCS operational semantics rules.

6 CCS

In this section we describe in detail an implementation of the structural operational semantics for
Milner’s Calculus of Communicating Systems, CCS [52]. The main novelty with respect to the imple-
mentation of the previous languages is the use of the frozen attribute. We will also see how Maude
can be used to implement other kinds of semantics, as illustrated with the semantics of the Hennessy-
Milner logic [38] on top of CCS; however, in this logic example we will need to use also Maude’s
metalevel.

First, we provide a very brief introduction to CCS. We assume a set A of names; the elements of
the set A = {a | a € A} are called co-names, and the members of the (disjoint) union £ = AU A are
labels naming ordinary actions. The function a — @ is extended to £ by defining @ = a. There is a
special action called silent action and denoted 7, intended to represent internal behaviour of a system,
and in particular the synchronization of two processes by means of complementary actions a and @.
Then the set of actions is LU {7}. The set of processes is intuitively defined as follows:

e ( is the inactive process that does nothing.

e [f o is an action and P is a process, «.P is the process that performs « and subsequently behaves
as P.

e If P and () are processes, P + (@ is the process that may behave as either P or Q.

e If P and @ are processes, P |(Q represents P and @) running concurrently with possible commu-
nication via synchronization of a pair of ordinary actions a and @.

o If P is a process and f : £ — L is a (finite) relabelling function such that f(a) = f(a), P[f] is
the process that behaves as P but with the actions relabelled according to f, assuming f(7) = 7.

e If Pis aprocess and L C L is a (finite) set of ordinary actions, P\L is the process that behaves
as P but with the actions in L U L prohibited.

e If P is a process, X is a process identifier, and X =g P is a defining equation where P may
recursively involve X, then X is a process that behaves as P.

This intuitive explanation can be made precise in terms of the structural operational semantics
shown in Figure 23, that defines a labelled transition system for CCS processes. To simplify the
presentation, we have already assumed that the operators for summation and parallel composition
are commutative and associative, thus using a more abstract syntax and eliminating the need for
symmetric cases in the corresponding rules.

6.1 CCS syntax

We define the CCS syntax in Maude. Quoted identifiers are used to represent labels and process
identifiers. Notice the attributes assoc and comm for the summation and parallel composition oper-
ators. All the non-constant operators for building processes have been defined as frozen; we explain
the reason for this in Section 6.2.
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fmod CCS-SYNTAX is
including QID .
sorts Label Act ProcessId Process
subsorts Qid < Label < Act
subsorts Qid < ProcessId < Process

op “_ : Label -> Label .
eq © 7 L:Label = L:Label .
op tau : -> Act
op O : -> Process
op _._ : Act Process -> Process [frozen prec 25] .
op _+_ : Process Process -> Process [frozen assoc comm prec 35]
op _|_ : Process Process -> Process [frozen assoc comm prec 30]
op _[_/_] : Process Label Label -> Process [frozen prec 20]
op _\_ : Process Label -> Process [frozen prec 20]
endfm

We represent full CCS, including (possibly recursive) process definitions by means of contexts. We
have defined these contexts together with operations to work with them in the module CCS-CONTEXT
below. It includes a constant context used to keep the definitions of the process identifiers used in
each CCS specification.

fmod CCS-CONTEXT is including CCS-SYNTAX .
sort Context

op _=def_ : ProcessId Process -> Context [prec 40]

op nil : -> Context

op _&_ : [Context] [Context] -> [Context] [assoc comm id: nil prec 42]
op _definedIn_ : ProcessId Context -> Bool .

op def : ProcessId Context -> [Process]

op context : -> Context

vars X X’ : ProcessId .

var P : Process

vars C C’ : Context

cmb (X =def P) & C : Context if not(X definedIn C)

eq X definedIn nil = false .

eq X definedIn (X’ =def P & C’) = (X == X’) or (X definedIn C’)

eq def (X, (X’ =def P) & C’) = if X == X’ then P else def(X, C’) fi
endfm

Notice how the union of contexts _&_ is a partial operation defined at the level of kinds ( [Context]).
The union of two contexts is a correct context if the defined process identifiers are disjoint. The (con-
ditional) membership axiom (cmb) establishes this fact, using the auxiliary operation _definedIn_.

6.2 Implementation of CCS operational semantics

In order to implement the CCS semantics in Maude with transitions as rewrites, we want to interpret
a CCS transition P —%» P’ as a rewriting logic rewrite. However, rewrites have no labels, which are
essential in the CCS semantics; therefore, we instead make the label a part of the resulting term,
obtaining in this way a rewrite of the form P — {a}P’, where {a} P’ is a value of sort ActProcess, a
supersort of Process. The following module, which is an admissible module [15] and therefore directly
executable, includes the CCS semantics implementation.

mod CCS-SEMANTICS is
protecting CCS-CONTEXT .
sort ActProcess
subsort Process < ActProcess

op {_}_ : Act ActProcess -> ActProcess [frozen]
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .

*x* Prefix

rl [Pref] : A . P => {A}P .

*** Summation

crl [Sum] : P + Q => {A}P’ if P => {A}P’
*** Composition
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crl [Par1l] : P | Q => {A}(®’ | Q) if P => {A}P’ .

crl [Par2] : P | Q => {tau}(P’ | Q’) if P => {L}P’ /\ Q => {~ LIQ’ .

**x Relabelling

crl [Rell] : PIM / L] => {M}(P’[M / L]) if P =>{L}P’ .

crl [Rel2] : P[M / L] => {® M}(P’[M / L]) if P =>{" L}P’ .

crl [Rel3] : P[M / L] => {A}(®P’[M / L]) if P =>{A}P> /\ A=/=L /\ A =/="1 .

**x* Restriction

crl [Res] : P\ L => {A}®P’ \ L) if P => {A}P> /N A =/=L /\ A =/="1 .

*x* Definition

crl [Def] : X => {A}P if (X definedIn context) /\ def(X,context) => {A}P .
endm

In this semantic representation, the rewrite rules have the property of being sort-increasing, i.e., in
a rewrite £ — t/, the least sort of ¢’ is bigger than the least sort of t. If we restrict ourselves to terms
that are well formed in the sense that they can be assigned a sort (and not only a kind), one rule
cannot be applied unless the resulting term is well formed, that is, it has a sort. For example, although
A . P — {A}P is a correct transition, we cannot derive (A . P) | Q — ({A}P) | Q because the
righthand side term is not well formed. In this way, rewrites are only allowed to happen at the top of
a process term, and not inside the term.

However, this mechanism to block undesired sort-increasing rewrites is not implemented in the
current Maude 2.0 system, because term rewriting can happen at the level of kinds, and not only
at the level of sorts. Therefore, our solution has been to declare all the syntax operators as frozen,
which prevents the arguments of the corresponding operators from being rewritten by rules; see module
CCS-SYNTAX in Section 6.1. This has not been necessary in the previous sections, because there all the
additional structure (like environments) were put in the lefthand side of the rules and this directly
disallowed the application of rewrite rules inside terms (that is, the congruence rule of rewriting logic
could not be applied), as well as the concatenation of rewrites (that is, the transitivity rule could not
be used).

Moreover, in the presence of rewrite conditions and infinite processes (those with an infinite number
of successors), the frozen attribute will become much more useful, as we are going to see right now.
If we have the rewrite condition P => {A}Q, and assume that the attribute frozen is not used, then
P is tried to be rewritten in any possible way, and the result is matched against the pattern {A}Q. For
instance, if in a correct application of this rule P is of the form (A . P’) | Q’, then P is rewritten
to ({A}P’) | Q’ although then the result is rejected. The problem appears when we have recursive
processes, because the built-in search that tries to satisfy the rewrite condition can become infinite
and not terminate. For example, if P’ above is recursive, given by P> = A . P’ then P is rewritten

to ({A}P’) | Q’, ({AX{A}P’) | Q’, etc,,

/ P
app) 1 @ AP | @ ({A}{a}{a}P’) | @
although all these results are going to be rejected because they are not well formed. Moreover, these
rewrites do not correspond to any transition in the CCS semantics, where transitions always occur at
the top of a process.

Although the frozen attribute solves the previous problem, it still appears when we want to know
all the possible rewrites of the above process P’ which are of the form {A}Q with Q of sort Process (as
we do in Section 6.4 to implement the modal logic semantics). In this case, P’ is rewritten to {A}P’,
but also to {A}{A}P’, {A}{A}{A}P’, etc.,

/ P’
{atp {aH{a}p’ {a{a{a}p

and only the first rewrite matches the pattern {A}Q. Thus, we have to declare also the operator {_}_
as frozen.
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In summary, we use the frozen attribute to ensure that rewrites happen only at the top as well as
to avoid an infinite loop in the search process when we know that the search would be unsuccessful,
although the search may be unsuccessful for two different reasons: either because the built terms are
not well formed, as in ({A}YP’) | Q’, and that is the reason why the syntax operators are frozen; or
because the terms do not match the given pattern, as in {A}{A}P’, and that is the reason why {_}_
is frozen.

A disadvantage is that with the shape of rewrite rules in CCS-SEMANTICS and all the constructor
operators being declared as frozen, we have lost the ability of proving that a process can perform a
sequence of actions, or trace, because the rules can only be used to obtain one-step successors. The
congruence rule of rewriting logic cannot be used because the operators are frozen, and the transitivity
rule cannot be used because all the rules rewrite to something of the form {A}Q, and there is no rule
with this pattern in the lefthand side. This is not a problem if we want to use the semantics only in
the definition of the modal logic semantics, because there only one-step successors are needed.

However, we can solve this by extending the semantics with rules that generate the transitive
closure of the CCS transitions as follows:

sort TProcess .

subsort TProcess < ActProcess .

op [_] : Process -> TProcess [frozen]

crl [refl] : [ P ] => {A}Q if P => {A}Q .

crl [tran] : [ P ] => {A}AP if P => {A}Q /\ [ Q ] => AP .

Notice how we use the dummy operator [_]. If we did not use it in the lefthand side of the above
rules, the lefthand side of both the head of the rule and the rewrites in conditions would be variables
that match any term and then the rule itself could be used in order to solve its first condition, giving
rise to an infinite loop. In addition, the dummy operator has also been declared as frozen in order
to avoid useless rewrites like for example [ A . P ] — [ {A}P ]. This dummy operator is used to
control which rules we want to be applied to resolve the conditions in rules refl and tran. This is a
similar technique to that used in Section 3.3 when a different operator _,_|=_ was used to represent
the reflexive, transitive closure of the transition relation — 4.

The resulting representation of CCS, with these two last rules, is semantically correct in the sense
that given a CCS process P, there are processes P, ..., P, such that

pPYp 2. 2 p

if and only if [ P ] can be rewritten into {a1}{a2}...{ak}Pk (see [48]).
By using the Maude 2.0 search command, we can find all the possible one-step successors of a
process, or all the successors after performing a given action.

Maude> search ’a . ’b . 0 | © ’a . 0 =>+ AP:ActProcess .
Solution 1 (state 1)
AP:ActProcess ——> {~ ’a}0 | ’a . ’b . 0
Solution 2 (state 2)
AP:ActProcess -—> {’a}’b . 0 | “ ’a . 0
Solution 3 (state 3)
AP:ActProcess --> {tau}0 | ’b . O
No more solutiomns.

Maude> search ’a . ’b . 0 + ’c . 0 =>+ {’a}AP:ActProcess .
Solution 1 (state 2)

AP:ActProcess —-> ’b . 0
No more solutioms.

If we add the following equation to the module CCS-SEMANTICS, defining the recursive process
’Proc in the CCS context, we prove that >Proc can perform the trace ’a ’b ’a:

eq context = ’Proc =def ’a . ’b . ’Proc .
Maude> search [1] [ ’Proc ] =>+ {’a}{’b}{’a}X:Process .

Solution 1 (state 5)
X:Process --> ’b . ’Proc
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Figure 24: CCS weak transition.

We have asked Maude to search if there is one ([1]) way in which the term [ ’Proc ] can be
rewritten into the pattern {’a}{’b}{’a}X:Process. The search command performs a breadth-first
search in the conceptual tree of all possible rewrites of term [ ’Proc ], and since there is a solution,
it finds it. However, if we asked to search for more solutions, the search would not terminate, although
there are no more solutions, because the search tree is infinite.

[ ’Proc ]

— N\

{’a}’b.’Proc {’a}{’b}’Proc {’a}{’b}{’a}’b.’Proc

6.3 Extension to weak transition semantics

Another important transition relation defined for CCS, P =% P’ does not observe 7 transitions [52].
It is defined in the first row of Figure 24, where —* denotes the reflexive, transitive closure of ——,
which is also defined as indicated in the second row of Figure 24.

We can also implement this transition relation by means of rewrites; a transition P ——* P will
be represented as a rewrite P — {7} P’ and a transition P =% P’ will be represented as a rewrite
P — {{a}}P’. We again have to introduce dummy operators to prevent undesired uses of the new
rewrite rules in the verification of the rewrite conditions. The proposed implementation is as follows:

sorts Act*Process ObsActProcess .

op {tau}*_ : Process -> Act*Process [frozen]

op {{_}}_ : Act Process -> ObsActProcess [frozen]
sort WProcess .

subsorts WProcess < Act*Process ObsActProcess .

op I_| : Process -> WProcess [frozen]

op <_> : Process -> WProcess [frozen]

rl [Refl*] : | P | => {tau}* P .

crl [Tran*] : | P | => {tau}* R if P => {tau}Q /\ | Q | => {tau}*x R .

crl [Weak] : < P > => {{A}} P’ if | P | => {tau}*x Q /\
Q => {AXQ> /\ 1 Q | => {tau}x P’ .

Notice that both the new semantics operators, {tau}*_ and {{_}}_, as well as the dummy oper-
ators, |_| and <_>, are declared frozen, for the same reasons already explained in Section 6.2.

We can use the search command to look for all the weak successors of a given process after
performing action ’a.

Maude> search < tau . ’a . tau . ’b . 0 > =>+ {{ ’a }}AP:ActProcess .
Solution 1 (state 2)
AP:ActProcess --> tau . ’b . O
Solution 2 (state 3)
AP:ActProcess —-> b . 0
No more solutioms.

6.4 Hennessy-Milner modal logic

We now want to implement the Hennessy-Milner modal logic for describing local capabilities of CCS
processes [38, 63]. Formulas are built according to the following grammar:
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P Ett

PE® APy iff PE®; and P = @,

PE® Vo, iff PE® or P&

P = [K]® iffVQe{P |P— PracK}.QE®
PE(K)® if3Qec{P |P-“ P AacK}.QE®
PE[K]® iffVvQe{P |P=P racK}.QEF®
PE(K)® if3Qe{P |P==P racK}.QEF®

Figure 25: Modal logic satisfaction relation.

B =t | ££ | Dy A Dy | By V By | [K]D | (KD | [K]D | (K)D,

where K is a (finite) set of actions. The satisfaction relation describing when a process P satisfies a
property ®, denoted P |= @, is inductively defined in Figure 25.

We have that any process satisfies the formula tt and none satisfies the formula £ff. A process P
satisfies the formula ®; A @5 if it satisfies both ®; and ®5, and it satisfies the formula ®; V &5 if it
satisfies either ®; or ®3. A process P satisfies the formula [K]® built with the universal (box) modal
operator if all the one-step successors of P after performing an action in the set K satisfy the formula
®. On the other hand, a process P satisfies the formula (K)® built with the existential (diamond)
modal operator if at least one of its K successors satisfies .

Since the definition of the satisfaction relation uses the transitions of CCS, we could try to imple-
ment it at the same level, with rules like the following ones:

rl [and] : P |= Phi /\ Psi => true if P |= Phi => true /\ P |= Psi => true .
rl [dial] : P |= < A > Phi => true if P => {A}Q /\ Q |= Phi => true .

which implement the behaviour of the conjunction and of the existential modal operator.

These rules are correct, and they exactly represent what the satisfaction relation of the modal
logic expresses. For example, the condition of the second rule represents that there exists a process
Q such that P — @ and @Q | ®, which is the definition of the diamond modal operator. That
is because the variable Q is (implicitly) existentially quantified in the rule condition. But we find a
problem with the definition of the box modal operator, because it uses a universal quantifier over the
possible transitions of a process. If we want to work with all the possible one-step rewrites of a term,
we need to go up to the metalevel. By using the operation metaSearch, we have defined an operation
succ that returns all the (metarepresented) successors of a process after performing actions in a given
finite set.

The definition of the operation succ in the module SUCC below uses two auxiliary operations.
The evaluation of allOneStep(T,N,X) returns all the one-step rewrites of term T (skipping the first
N solutions) that match the pattern X by using rules in the module MOD (the metarepresentation of
CCS-SEMANTICS denoted by the term [’CCS-SEMANTICS] in the module SUCC shown below). The
evaluation of filter (F,TS,AS) returns the metarepresented processes P such that the term F[A,P]
is in TS and A is in AS. In order to look for the term A in the term set AS, we compare terms
in the module MOD. This is because different metarepresented terms, like >’a.Qid and ’’a.Act, can
represent the same action in the module CCS-SEMANTICS. The operation filter is used in the definition
of succ(T,TS) to remove from all the successors of process T those processes that are reached by
performing an action not in the set TS.

Having defined these operations in such a general form, we can implement the operation wsucc
that returns all the weak successors with the same operations.

fmod SUCC is
including META-LEVEL .
op MOD : -> Module .
eq MOD = [’CCS-SEMANTICS]
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sort TermSet
subsort Term < TermSet

op mt : -> TermSet
op _U_ : TermSet TermSet -> TermSet [assoc comm id: mt]
op _isIn_ : Term TermSet -> Bool .

op allOneStep : Term MachineInt Term -> TermSet
op filter : Qid TermSet TermSet -> TermSet
op succ : Term TermSet -> TermSet
op wsucc : Term TermSet -> TermSet
var M : Module . var F : Qid . vars T T’ X : Term .
var N : MachineInt . vars TS AS : TermSet
eq T isIn mt = false
eq T isIn (T’ U TS) =

(getTerm(metaReduce(MOD, ’_==_[T,T’])) == ’true.Bool) or (T isIn TS)
eq filter(F, mt, AS) = mt
ceq filter(F, X U TS, AS) =

(if T isIn AS then T’ else mt fi) U filter(F, TS, AS)

if F[T,T’] := X .
eq allOneStep(T,N,X) =

if metaSearch(MOD, T, X, nil, ’+, 1, N) == failure then mt

else getTerm(metaSearch(MOD, T, X, nil, ’+, 1, N)) U

allOneStep(T, N + 1, X) fi
eq succ(T,TS) = filter((’‘{_‘}.),
allOneStep(T, O, ’AP:ActProcess), TS)
eq wsucc(T,TS) = filter((’ ‘{{_‘}}.),
allOneStep(’<_>[T], O, ’0AP:0ObsActProcess), TS)
endfm

Using the operations succ and wsucc we have equationally implemented the satisfaction relation
of the modal logic. Notice how the semantics for the modal operators is defined by unfolding to a
conjunction or disjunction where the successors of the given process are used.

fmod MODAL-LOGIC is
protecting SUCC .
sort HMFormula .
ops tt ff : -> HMFormula .
ops _/\_ _\/_ : HMFormula HMFormula -> HMFormula .

ops <_>_ [_]_ : TermSet HMFormula -> HMFormula .
ops <<_>>_ [[_]]_ : TermSet HMFormula -> HMFormula .
ops forall exists : TermSet HMFormula -> Bool .

op _l=_ : Term HMFormula -> Bool .

var P : Term . vars K PS : TermSet . vars Phi Psi : HMFormula .
eq P |= tt = true .

eq P |= ff = false

eq P |=Phi /\ Psi = P |=Phi and P |= Psi

eq P |=Phi \/ Psi = P |=Phi or P |=Psi

eq P |I= [ K] Phi = forall(succ(P, K), Phi)

eq P |= < K > Phi = exists(succ(P, K), Phi)

eq P |= [[ K ]] Phi = forall(wsucc(P, K), Phi)

eq P |= << K > Phi = exists(wsucc(P, K), Phi)

eq forall(mt, Phi) = true .
eq forall(P U PS, Phi) = P |= Phi and forall(PS, Phi)

eq exists(mt, Phi) = false
eq exists(P U PS, Phi) = P |= Phi or exists(PS, Phi)
endfm

Using two examples from [63], we show how we can prove in Maude that a modal formula is
satisfied by a CCS process. The first example deals with a vending machine ’Ven defined in a CCS
context as follows:

eq context = (’Ven =def ’2p . ’VenB + ’1p . ’VenlL) &

(’VenB  =def ’big . ’collectB . ’Ven) &
(’Venl. =def ’little . ’collectL . ’Ven)
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The process ’Ven may accept, initially, a 2p or 1p coin. If a 2p coin is deposited, the big button
may be pressed, and a big item can be collected. If a 1p coin is deposited, the 1ittle button may be
pressed, and a little item can be collected. After an item is collected, the vending machine goes back
to the initial state.

One of the properties that the vending machine satisfies is that buttons cannot be pressed initially,
that is, before a coin is inserted. We can prove in Maude that Ven |= [big, little]ff:

Maude> red ’’Ven.Qid |= [ ’’big.Act + ’’little.Act ] ff .
result Bool: true

It also satisfies that after a coin is deposited and the corresponding button is pressed, an item (big
or little) can be collected.

Maude> red ’’Ven.Qid |= [ ’’1p.Act + ’’2p.Act ] [ ’’big.Act + ’’little.Act ]
< ?’collectB.Act + ’’collectL.Act > tt .
result Bool: true

We can also prove that a process does not satisfy a given formula. For example, we can prove that
after inserting a coin 1p in the vending machine, it is not possible to press button big and collect a
big item.

Maude> red ’’Ven.Qid |= < ’’1p.Act > < ’’big.Act > < ’’collectB.Act > tt .
result Bool: false

The second example deals with a railroad crossing system specified as follows:

eq context = (’Road =def ’car . ’up . ~ ’ccross . ~ ’down . ’Road) &
(’Rail =def ’train . ’green . ~ ’tcross . ~ ’red . ’Rail) &
(’Signal =def ~ ’green . ’red . ’Signal + ~ ’up . ’down . ’Signal) &

(°Crossing =def ((’Road | (’Rail | ’Signal))
\ ’green \ ’red \ ’up \ ’down ))

The system consists of three components: Road, Rail, and Signal. Actions car and train
represent the approach of a car and a train, up opens the gates for the car, €cross is the car crossing,
down closes the gates, green is the receipt of a green signal by the train, tcross is the train crossing,
and red sets the light red.

The process ’Crossing satisfies that when a car and a train arrive to the crossing, exactly one of
them has the possibility to cross it.

Maude> red ’’Crossing.Qid |= [[ ’’car.Act 1] [[ ’’train.Act 1]

((k< ?~_[?’ccross.Act] >> tt) \/ (K< *~_[’’tcross.Act] >> tt)) .
result Bool: true
Maude> red ’’Crossing.Qid |= [[ ’’car.Act 1] [[ ’’train.Act 1]

((k< ?~_[?’ccross.Act] >> tt) /\ (k< ’~_[’’tcross.Act] >> tt)) .
result Bool: false

7 Full LOTOS

In this section we go one step further in the implementation of structural operational semantics, by
presenting a complete tool, implemented all in Maude, where Full LOTOS specifications can be entered
and executed.

The formal description technique LOTOS [44] was developed within ISO for the formal specification
of open distributed systems. Its behaviour description part is based on process algebras, borrowing
ideas from CCS [52] and CSP [41], and the mechanism for defining data types is based on ACT ONE
[27]. The union of the behaviour and data type description parts is known as Full LOTOS; we normally
use here the term LOTOS to refer to the whole language. LOTOS became an international standard
(IS-8807) in 1989; since then LOTOS has been used to describe hundreds of systems, and most of this
success is due to the existence of tools where specifications can be executed, compared, and analyzed.
A lot of work has been done regarding LOTOS implementations [35, 34, 26, 19, 29].
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g?x:Nat [z < 10];
h?y:Nat;
h!'x;stop

r <10 gz h7y:Nat; \ tt hy
hlx;stop

Figure 26: Symbolic transition system.

The standard defines LOTOS semantics by means of labelled transition systems, where each data
variable is instantiated with every possible value. That is the reason why most of the tools ignore
or restrict the use of data types. Calder and Shankland [10] have defined a symbolic semantics for
LOTOS which gives meaning to symbolic, or data parameterised processes (see Section 7.1) and avoids
infinite branching.

In this section we focus on the use of rewriting logic and Maude to implement, following the
transitions as rewrites approach, a complete formal tool based on a symbolic semantics where LOTOS
specifications can be executed without having to impose restrictions in their data types. The reflective
features of rewriting logic and the good properties of Maude as a metalanguage [14] make it possible
to implement the whole tool in the same semantic framework. Specifically, we have obtained an
efficient implementation of the operational semantics of the behaviour part of LOTOS, which has been
integrated with ACT ONE specifications that are automatically translated to functional modules in
Maude, and finally we have built an entire environment with parsing, pretty printing, and input/output
processing of LOTOS specifications. Our aim has been to implement a formal tool that can be used by
everyone without knowledge of the concrete implementation, but where the semantics representation
is at a sufficiently abstract level that it can be understood and modified by anybody familiar with
operational semantics.

7.1 LOTOS symbolic semantics

The implementation of the LOTOS symbolic semantics given here is based on the work presented in
[10] by Calder and Shankland. A symbolic semantics for LOTOS is given by associating a symbolic
transition system with each LOTOS behaviour expression P. Following [37], Calder and Shankland
define symbolic transition systems (STS) as transition systems which separate the data from process
behaviour by making the data symbolic. STS are labelled transition systems with variables, both
in states and transitions, and conditions which determine the validity of a transition. A symbolic
transition system consists of:

e A (non-empty) set of states. Each state T is associated with a set of free variables, denoted

fo(T).

e A distinguished initial state, Tp.

.. . b « . . .
e A set of transitions written as T ———— T”, where « is an event and b is a Boolean expression,

such that fo(T") C fo(T) U fo(a) and fo(b) C fo(T) U fo(a).

In the symbolic semantics, open behaviour expressions label states (for example, h!z ; stop), and
transitions offer variables, under some conditions; these conditions determine the set of values which
may be substituted for variables.

In [10] the intuition and key features of this semantics are presented, together with axioms and
inference rules for each LOTOS operator. We will present some of them, together with their repre-
sentation in Maude, in Section 7.2.2. Figure 26 shows an example of STS.

As we will see in Section 7.2.3, the obtained representation is itself executable, although without
values, apart from the predefined Booleans. The LOTOS symbolic semantics is parameterized over
the set of values and data expressions. Thus, if we want to build a usable formal tool, we also need
to handle data types, specified using ACT ONE [27].

Instead of defining a data type for representing ACT ONE modules in Maude and operations
to represent the reduction process in ACT ONE, we have implemented an automatic translation
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from ACT ONE modules into functional modules in Maude. We are then able to use Maude’s high-
performance reduction engine in a conservative way. We present in Section 7.3 this translation and
then show how the modules are extended to be used by the semantics.

In Section 7.4 we show how the semantics implementation and the ACT ONE modules translation
are integrated to build an entire environment for our formal tool, where LOTOS specifications with
complete freedom in their data types and (possibly recursive) process definitions, can be entered and
executed by means of a user interface that completely hides the concrete implementation details.

7.2 LOTOS symbolic semantics in Maude

In order to implement the LOTOS symbolic semantics in Maude following the transitions as rewrites
approach, we interpret a LOTOS transition T ba T asa rewriting logic rewrite T — {b}a}T".
Since the rewriting logic arrow has no labels, we write them as part of the righthand side term, as we
did in the CCS case (see Section 6.2).

In the following, the Maude modules will be abbreviated due to space reasons; the complete code
can be found in [69].

7.2.1 LOTOS syntax

There are two different types of syntax: the concrete syntax used by the specifier (see [69], for full
details), and the abstract syntax used by the semantic definition and implementation and intro-
duced in this section. It is defined in the Maude functional module LOTOS-SYNTAX, which includes
DATAEXP-SYNTAX. We use the predefined quoted identifiers to build LOTOS variable, sort, gate, and
process identifiers. Booleans are the only predefined data type. LOTOS syntax is extended in a
user-definable way when ACT ONE data types specifications are used. Values of these data types will
extend the type DataExp below. We shall see how this is done in Section 7.3.

fmod DATAEXP-SYNTAX is

protecting QID .

sort Varld .

op V : Qid -> VarId .

sort DataExp .

subsort VarId < DataExp . **x A LOTOS variable is a data expression.

subsort Bool < DataExp . *** Booleans are a predefined data type.
endfm

fmod LOTOS-SYNTAX is
protecting DATAEXP-SYNTAX .
sorts SortId GatelId ProcId .
op S : Qid -> SortId . op G : Qid -> GateId . op P : Qid -> ProcId .
sort BehExp .
op stop : -> BehExp .
op exit(_) : ExitParam -> BehExp .

op _;_ : Action BehExp -> BehExp [frozen prec 35] .
op _[J_ : BehExp BehExp -> BehExp [frozen prec 40] .
op _I[_1l_ : BehExp GateIdList BehExp -> BehExp [frozen prec 40]

op hide_in_ : GateIdList BehExp -> BehExp [frozen prec 40]

[ ]

endfm

7.2.2 LOTOS symbolic semantics implementation

First, we define Contexts, which are used to keep the definitions of processes introduced in a LOTOS
specification. In order to execute a process instantiation, the process definition has to be looked for
in the context. The actual context is built when the LOTOS specification is entered to the tool
(we will see how this is done in Section 7.4.2). In the semantics, a constant context is assumed,
representing the collection of process definitions. We could say that the semantics is parameterized
over this constant, that will be instantiated when a concrete specification is used.
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fmod CONTEXT is
protecting LOTOS-SYNTAX .
sort Context .
op context : -> Context .

[.]

endfm

Now, we can implement the LOTOS symbolic semantics. First we show some operations used in
the semantic definition that present problems when implementing them, and how we have solved these
problems in Maude.

In the semantics, a set new-var of fresh variable names is assumed. As mentioned in [10], strictly
speaking, any reference to this set requires a context, i.e. the variable names occurring so far. Instead
of complicating the implementation with this other context, we have preferred to use a predefined
Maude utility imported from module ORACLE, where a constant NEWQ is defined. Each time NEWQ is
rewritten, it is rewritten to a different quoted identifier. With the following definition, we have the
set of fresh variable names.

op new-var : —> VarId .
eq new-var = V(NEWQ)

A (data) substitution is written as [z/x], where z is substituted for z. It seems to be easy to
implement equationally, and we present below some equations showing how the substitution operation
distributes over the syntax of behaviour expressions. However, if we want to allow user-definable data
expressions by means of an ACT ONE specification, we cannot completely define this operation now,
because we do not know at this point the syntax of data expressions. We will describe in Section 7.3.1
how the module containing the new syntax is automatically extended to define this operation on new
data expressions.

op _[_/_] : BehExp DataExp VarId -> BehExp .
op _[_/_1 : DataExp DataExp VarId -> DataExp .
vars E E’ E1 : DataExp .

var g : Gateld . var 0 : Offer . var SP : SelecPred .
var x : Varld . var b : TransCond . var GIL : GateIdList .
var S : SortIld . var a : Event . vars P P’ P1 : BehaviourExp .

eq stop [E’ / E] = stop .
eqg ! E1 ; P[E” /E] =g ! (E1[E’ / E]) ; (P[E’ / El)
eq P1 [1 P2 [E’ / E] = (P1[E’ / E]) [1 (P2[E’ / EI)

[ ]

An operation wvars, used to obtain the variables occurring in a behaviour expression, gives rise to
the same problem, that is, we cannot define it completely at this level since data expressions syntax is
user-definable. We will see in Section 7.3.1 how it is extended automatically for new data expressions.

sort VarSet . subsort VarId < VarSet .
op mt : -> VarSet .
op _U_ : VarSet VarSet -> VarSet [assoc comm id: mt]

eq x U x = x . *xx idempotency

op vars : BehExp -> VarSet .

op vars : DataExp -> VarSet .

eq vars(stop) = mt .

eq vars(g 7 x : S ; P) = x U vars(P)
eq vars(P1 [] P2) = vars(P1) U vars(P2)
eq vars(x) = x .

[.]

As mentioned above, a transition T’ b oo , where T and T" are behaviour expressions, b is a
transition condition, and « is an event, will be represented as a rewrite T — {b}{a}T”", where the
righthand side term is of sort TCondEventBehExp.

sort TCondEventBehExp .

subsort BehExp < TCondEventBehExp .
op {_H_}_ : TransCond Event BehExp -> TCondEventBehExp [frozen]
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As in Section 6.2, rewrite rules will be sort-increasing, since they rewrite terms of sort BehExp to
terms of its supersort TCondEventBehExp. This avoids the appearance of bad-formed terms in which
subterms of a LOTOS operator are not behaviour expressions.

Moreover, the operator {_}{_}_ used to build the values in the righthand side of the rewrite rules
representing the semantic rules has been declared frozen. The reason is to avoid undesired rewrites
which can lead to infinite searches. In this way, with the command search or the metalevel operation
metaSearch we can obtain the one-step successors of a behaviour expression.

The LOTOS symbolic semantics consists of 28 rules. We present some of those rules and their
representation as rewrite rules in Figure 27; the complete set of rules can be found in [69]. We also
show the inference rules to ease the comparison between the mathematical and Maude representations.
The inference rules are not exactly the ones presented in [10], because we have generalized them to
allow multiple event offers at an action.

The rules for the prefix operator show how axioms are represented as rewrite rules without condi-
tions. The choice range rule shows how non-deterministic choice can be made by using rewrite rules.
The hide rules show how side conditions in the inference rules are added as conditions in the rewrite
rules. Finally, the general parallelism rule shows how external definitions can be used, as the one
defining the substitution (not shown in Figure 27).

After having implemented all the semantics rules for behaviour expressions, we have the following
conservativity result: Given a LOTOS behaviour expression P, there are a transition condition b, an
event a, and a behaviour expression P’ such that

Pba/

if and only if P can be rewritten {b}{a}P’ using the presented rules.

In [10], the concept of a term is also defined, consisting of an STS paired with a substitution.
Transitions between terms are then defined. We have also implemented these transitions in a way
similar to the implementation of transitions for behaviour expressions (see [69]).

7.2.3 Execution example

By using the Maude search command, we can find all the possible transitions of a behaviour expres-
sion.

Maude> search
G(’g) ; GC’h) ; stop
I[L GCg) 1
(GC’a) ; stop [1 G(’g) ; stop) =>+ X:TCondEventBehExp .
Solution 1 (state 1)
X:TCondEventBehExp --> {true}{G(’a)}G(’g) ; G(’h) ; stop |[GC’g ]| stop
Solution 2 (state 2)
X:TCondEventBehExp --> {true}{G(’g)}G(’h) ; stop I[G(’g)]| stop
No more solutiomns.

Maude> search G(’h) ; stop |[G(°g)]| stop =>+ X:TCondEventBehExp .
Solution 1 (state 1)

X:TCondEventBehExp --> {true}{G(’h)}stop |[G(’g)]| stop

No more solutions.

But we have to write behaviour expressions using the abstract syntax (like the gate identifier
G(’h)) and we cannot use data expressions, apart from the predefined Booleans, because we have
not introduced yet any ACT ONE specification. These specifications are part of a Full LOTOS
specification, and therefore are user-definable. We will see in the following sections how to give
semantics to ACT ONE specifications and how they can be integrated with the previous LOTOS
semantics implementation.

7.3 ACT ONE modules translation

We want to be able to introduce into our tool user-defined ACT ONE specifications, which will then
be translated internally to Maude functional modules.
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prefix axioms

.ptt_a. p
a m — rl A ; P => {true}{A}P .
et gE B rl g 0 ; P => {true}{g e0f£(0)}P .
gdy...dy; P . p rl g 0 [SP] ; P => {SP}{g eDff(0)}P .
gdi... d,[SP]:P 5P 9B By p op eOff : Offer -> EOffer .

eq e0ff(! E) = E .
, E; if d; ='F; eq e0ff(? x : 8) = x .
where ;=0 i 4 = 70,0 eq e0f£(0 0°) = e0f£(0) e0f£(0’) .
choice range rule
Plgi/g] e i

choice g in [g1,...,gn] [| P 22 P’

for each g; € {¢g1,...,9n}

crl choice g in [GIL][] P => {b}{a}P’

if select(GIL) => gi /\ Plgi / gl => {p}a}p’
sort GateId? . subsort Gateld < GatelId? .

op select : GateldList -> GateId? .

rl select(g) => g .

rl select(g, GIL) => g .

rl select(g, GIL) => select(GIL) .

hide rules
p-Lt o, p
hide g1,...,g, in P 21 hide g1, ..., gy in P’

name(a) € {917 cee 7gn}

pLt o, p
hide g1,..., g, in P > hide g1, ...,gn in P’

name(a) € {g1,...,9n}

crl hide GIL in P => {b}{i}hide GIL in P’
if P => {b}{a}P’ /\ (name(a) in GIL) .
crl hide GIL in P => {b}{a}hide GIL in P’
if P => {b}{a}P’ /\ not(name(a) in GIL) .

general parallelism rule (not synchronising)

Pt p

— name(a) € {g1,...,9n, 0}
Pi|[g1,- .., gn)| P2 2527 P{o|[g1,...,gn]| P2

where a = gF; ... E,, 0 = 01 ...0,, dom(o;) are disjoint, and
_J [zi/xi] it Bi =2, x; € vars(P2) and z; € new-var.
7= [] otherwise

crl P1 |[GIL]| P2 => {b sp(a,vars(P2))}{a sp(a,vars(P2))}
((P’ sp(a,vars(P2))) |[GIL]| P2)
if P1 => {b}{a}P’ /\ not(name(a) in (GIL, delta)) .

Figure 27: Some semantics rules and their implementation in Maude.
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We first have to define ACT ONE’s syntax. In Maude, the syntaz definition for a language L is
accomplished by defining a data type Grammar,; this can be done with very flexible user-definable
mixfix syntax, that can mirror the concrete syntax of £. Particularities at the lexical level of £ can be
accommodated by user-definable bubble sorts, that tailor the adequate notions of token and identifier
to the language in question. Bubbles correspond to pieces of a module in a language that can only be
parsed once the grammar introduced by the signature of the module is available [14]. This is specially
important when £ has user-definable syntax, as it is our case with ACT ONE. The grammar of ACT
ONE is defined in a module ACTONE-GRAMMAR that can be found in [69].

The idea is that the syntax of a language that allows modules including syntactic characteristics
defined by the user can be seen in a natural way as a syntax with two different levels: one that we can
call the top level syntax of the language, and another one user-definable that is introduced in each
module. Bubble sorts allow us to reflect this duplicity of levels. In order to illustrate this concept, let
us consider the following ACT ONE specification defining natural numbers modulo 3:

type NAT3 is

sorts Nat3
opns
0 : -> Nat3
s_ : Nat3 -> Nat3
eqns
ofsort Nat [:J
endtype

The boxed character sequences are not part of the top-level syntax of ACT ONE. In fact, they can
only be parsed with the grammar associated to the signature in the specification NAT3.

After having defined the module with ACT ONE syntax, we can use the metalevel operation
metaParse, which receives as arguments the representation of a module M and the representation of
a list of tokens, and returns the metarepresentation of the parsed term (a parse tree that may have
bubbles) of that list of tokens for the signature of M.

The next step consists in defining an operation translate that receives the parsed term and
returns a functional module with the same semantics as the introduced ACT ONE specification. The
syntactic analysis of possible bubbles is also done in this second step.

. . metaParse translate
QidList ———  Grammaract oNE —— FModule

Notice that we start with a QidList (a list of quoted identifiers), that is obtained from the user
input (see Section 7.4.3).
With our translation we achieve the following result: given an ACT ONE specification SP, and
terms t and ¢’ in SP, we have
SPet=t e MEty=ty

where M = translate(metaParse(ACTONE-GRAMMAR,SP)), and ¢y and t, are the representations of
t and ¢’ in M.

Before presenting in more detail how the translation is implemented, let us see how these two steps
are performed with the previous example module NAT3. If we execute the operation metaParse with
the metarepresented module ACTONE-GRAMMAR (which contains the top level syntax of ACT ONE) and
the following list of quoted identifiers

’type ’NAT3 ’is
’sorts ’Nat3

’opns
’0 ’: ’-> ’Nat3
’s_ ’: ’Nat3 ’-> ’Nat3
’eqns
’ofsort ’Nat
’s ’s ’s ’0 ’= 0 ’;
’endtype
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we obtain the next metarepresented term, that includes metarepresented tokens and bubbles:

>type_is_endtypel
’token[’’NAT3.Qid],
’__[’sorts_[’token[’’Nat3.Qid]l],

>__[?opns_[
> _[?_:“->_["token[’’0.Qid], ’token[’’Nat3.Qid]],
’_:_->_[’token[’’s_.Qid],’token[’’Nat3.Qid], ’token[’’Nat3.Qid]]1]1],
>eqns_[

’ofsort__[’token[’’Nat.Qid],
> _=_;[’bubble[’__[’’s.Qid,’’s.Qid,’’s.Qid,’’0.Qid]], ’bubble[’’0.Qid]]
1
]

]

Tokens and bubbles have as arguments metarepresented lists of quoted identifiers, that is, values
of sort QidList metarepresented. These values have to be parsed again (going down one level in the
representation) with the user-defined syntax (given in the opns part of the ACT ONE specification).

If we now execute the translateType operation commented below, we obtain the following
metarepresented Maude functional module, of sort FModule:

fmod ’NAT3 is
including ’DATAEXP-SYNTAX .
sorts ’Nat3 .
subsort ’VarId < ’Nat3 .
subsort ’Nat3 < ’DataExp .
op 0 : nil -> ’Nat3 [none]

op ’s_ : ’Nat3 -> ’Nat3 [nonel

none

eq ’s_[’s_[’s_[’0.Nat3]]] = ’0.Nat3 .
endfm

This functional module is the translation into Maude of the NAT3 specification in ACT ONE that
we have seen at the beginning of this section.
The translation is performed by the following operations defined at the metalevel:

op translateType : Term -> FModule .
op translateType : Term FModule FModule -> FModule .
op translateDeclList : Term FModule FModule -> FModule .

The first operation is the main one. It receives as argument the term returned by metaParse
and it returns its translation as a functional module. To do that it uses the generalized operation
translateType with three arguments: the ACT ONE specification not yet translated, the Maude
module with the already made translation, and the Maude module with (only) the signature in the
translated part.

vars T T’ T’’ : Term .
vars M M’ : Module .
eq translateType(T) =
translateType(T, addImportList(including ’DATAEXP-SYNTAX ., emptyFModule),
emptyFModule) .
eq translateType(’type_is_endtype[’token[T’],T’’], M, M’) =
translateDeclList(T’’, M,
addDecls (M’ ,extractSignature(’type_is_endtype[’token[T’],T’’]1)))

The operation translateDeclList goes through the list of declarations inside a data type speci-
fication, and it adds to its second argument the translation of each element.

For example, when an ACT ONE sort declaration for sort T is found, it is not only translated
into a Maude sort declaration for sort T, but we also have to declare the type T as a subsort of
the sort DataExp (since values of the declared type could be used in a behaviour expression to be
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type Naturals is fmod Naturals is

sorts Nat including DATAEXP-SYNTAX .
opns sorts Nat .
0 : -> Nat subsort VarId < Nat .
s : Nat -> Nat subsort Nat < DataExp .
_+_ : Nat, Nat -> Nat — op O : -> Nat .
eqns op s : Nat -> Nat .
forall x, y : Nat op _+_ : Nat Nat -> Nat .
ofsort Nat eq 0 + x:Nat = x:Nat .
0+x=x; eq s(x:Nat) + y:Nat =
s(x) +y=sx+7y ; s(x:Nat + y:Nat) .
endtype endfm

Figure 28: ACT ONE specification translation.

communicated) and the sort of LOTOS variables VarId has to be declared as a subsort of the type
T (since LOTOS variables could be used to build data expressions of this type). This is done in this
way because we want to integrate ACT ONE modules with LOTOS specifications, but the translation
is useful by itself, since it provides us with a tool in Maude where ACT ONE specifications can be
entered and executed.

eq translateDeclList(’sorts_[’token[T]], M, M’) =
addSubsortDeclSet (subsort downQid(T) < ’DataExp .,
addSubsortDeclSet (subsort ’VarId < downQid(T) .,
addSortSet (downQid(T), M))) .

We show another translation example in Figure 28. The ACT ONE specification on the left is
translated into the functional module on the right.

7.3.1 Module extensions

In Section 7.2.2 we saw that the operation that performs the syntactic substitution and the operation
that extracts the variables occurring in a behaviour expression were not completely defined. The
reason why we cannot define them completely when defining the semantics is the same in both cases:
the presence of data expressions with user-definable syntax, and thus unknown at that moment.

Now that we know the ACT ONE specification and we have translated it to a functional module, we
can define these operations on data expressions using the new syntax. Due to the metaprogramming
features of Maude, we can do it automatically. We have defined operations that take a module M and
return the same module M but where equations defining the substitution and extraction of variables
over expressions built using the signature in M have been added.

For example, if the operation addOpervars is applied to the module Naturals above, it adds the
following equations:

eq vars(0) = mt .
eq vars(s(vl:Nat)) = vars(vi:Nat) .
eq vars(vl:Nat + v2:Nat) = vars(vi:Nat) U vars(v2:Nat) .

Notice that in principle this is not the most natural way of defining this operation over Nat terms,
because the only constructors of sort Nat are 0 and s, and hence one could think that the first two
equations would be enough. However, here we are defining the operation over expressions that can
contain LOTOS variables, so the third equation is also needed.

We next explain how the operation addOpervars is implemented. Its argument is a module M
corresponding to the translation of an ACT ONE specification. So the operations declared in M can be
used to build LOTOS expressions of a certain sort. The operation addOpervars goes through the list
of operator declarations, and for each of them it adds an equation defining how variables are extracted
from terms whose top operator is that one. The module UNIT used below includes operations for
building metarepresented modules from their components: sort declarations, operations, equations,
rules, etc.
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fmod MODULE-EXTENSIONS is

protecting UNIT .
op addOpervars : Module -> Module .
op addOpervars : OpDeclSet Module -> Module .
op addOpervars : Qid TypeList Qid Module -> Module .
op buildArgs : TypeList MachineInt -> TermList
op buildArgs2 : Qid TermList -> TermList
var M : Module . vars OP S A A’ : Qid . var ARGS : Typelist
var T : Term . var TL : TermList . var AttS : AttrSet .
var 0DS : OpDeclSet . var N : Machinelnt .
eq addOpervars(M) = addOpervars(opDeclSet(M), M)
eq addOpervars(none, M) = M .
eq addOpervars(op OP : ARGS -> S [AttS] . ODS, M) =

addOpervars(0DS, addOpervars(0OP, ARGS, S, M))
eq addOpervars(OP, nil, S, M) =

addEquationSet(eq ’vars[conc(0P,conc(’.,S))] = ’mt.VarSet ., M)
eq addOpervars(0OP, A ARGS, S, M) =

addEquationSet(eq ’vars[0P[buildArgs(A ARGS, 1)]1] =

if ARGS == nil then ’vars[buildArgs(A ARGS, 1)]
else ’_U_[buildArgs2(’vars, buildArgs(A ARGS, 1))] fi ., M)
eq buildArgs(A, N) = conc(conc(index(’v,N),’:), A)
eq buildArgs(A A’ ARGS, N) = buildArgs(A, N), buildArgs(A’ ARGS, N + 1)
eq buildArgs2(0P, T) = OP[T]
eq buildArgs2(0P, (T,TL)) = OP[T], buildArgs2(OP,TL)
endfm

The equations added by the operation addOpervars together with the equation
eq vars(x) = x .

that we saw in Section 7.2.2 define how to extract variables from LOTOS data expressions built with
user-defined syntax.

7.4 Building the LOTOS user interface

We want to implement a formal tool where complete LOTOS specifications (with ACT ONE data
type specifications, a main behaviour expression, and process definitions) are entered and executed.
In order to execute or simulate the specification, we want to be able to traverse the symbolic transition
system generated for the main behaviour expression by using the symbolic semantics instantiated with
the data types given in ACT ONE and the given process definitions. We present here the main ideas
used in our implementation; full details can be found in [69].

The following module defines the commands of our tool.

fmod LOTOS-TOOL-SIGN is protecting LOTOS-SIGN .
sort LotosCommand .

op show process . : -> LotosCommand .
op show transitions . : -> LotosCommand .
op show transitions of_. : BehExp -> LotosCommand .
op cont_. : MachineInt -> LotosCommand .
op cont . : -> LotosCommand .
op show state . : -> LotosCommand .
endfm

The first command is used to show the current process. The second and third commands are used
to show the possible transitions (defined by the symbolic semantics) of the current or explicitly given
process, that is, they start the execution of a process. The fourth command is used to continue the
execution with one of the possible transitions, the one indicated in the argument of the command.
Command cont is a shorthand for cont 1. The sixth command is used to show the current state of
execution, that is, the current condition, trace, and possible next transitions.
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7.4.1 LOTOS input processing

When LOTOS behaviour expressions are introduced, either as part of a whole specification or in a tool
command, they have to be transformed into elements of the data type BehaviourExp in the module
LOTOS-SYNTAX (Section 7.2.1). The parse tree returned by metaParse with module LOTOS-GRAMMAR
may have bubbles (where data expressions may appear) that have to be parsed again using the user-
defined syntax. This syntax is obtained by translating the types defined in ACT ONE into functional
modules, as explained above. Moreover, the behaviour itself can define new syntax, since it can
declare new LOTOS variables by means of 7 offers, and these variables may appear in expressions.
For example, when processing the behaviour expression

g ?7x : Nat ; h ! s(x) + s(0) ; stop

the data expression s(x) + s(0) should be parsed using the fact that x is a variable of sort Nat.

We use the operation parseProcess to perform this translation. It takes as arguments the term
returned by metaParse (representing a behaviour expression), the metarepresented module with the
data types syntax (obtained from the ACT ONE specification), and the set of free variables that may
appear in the behaviour expression. It returns a behaviour expression without bubbles. It uses the
operation parseAction that, besides the term metarepresenting the given action (without bubbles),
returns the variables declared in the action (if any).

The operation parseDataExp takes an expression with bubbles, a module with the syntax with
which the expression has to be parsed, and a set of LOTOS variables which may appear in the
expression (that is, the expression was found in the scope of these variables). In order to correctly
parse the expression with bubbles, information about the variables has to be included in the expression
as Maude variables. The resulting term may have Maude variables, that have to be transformed into
LOTOS variables (which have the form V(Q), where Q is a quoted identifier).

Finally, the operation parseProcDeclList is used to build a metarepresented context that includes
the definitions of the processes declared in a specification.

7.4.2 Tool state handling

In our tool, the persistent state of the system is given by a single object which maintains the tool
state. This object has the following attributes:

e semantics, to keep the actual module where behaviour expressions can be executed, that is, the
module LOTOS-SEMANTICS in Section 7.2.2 extended with the syntax and semantics for new data
expressions;

e lotosProcess, to keep the behaviour expression that labels the node in the symbolic transition
system that has been reached during the execution;

e transitions, to keep the set of possible transitions from lotosProcess;

e trace, to keep the sequence of events performed in the path from the root of the STS to the
current node;

e condition, to keep the conjunction of transition conditions in that path; and

e input and output, to handle the communication with the user.

We declare the following class by using the notation for classes in object-oriented modules [16]:
class ToolState | semantics : Module, lotosProcess : Term,

transitions : TermSeq, trace : Term, condition : Term,
input : QidList, output : QidList .
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Then we describe by means of rewrite rules the behaviour of the tool when a LOTOS specification
or the different commands are entered into the system. For example, there is a rule which processes a
LOTOS specification entered into the system. We allow LOTOS specifications with four arguments:
the name of the specification, an ACT ONE specification defining the data types to be used, the
main behaviour expression, and a list of process definitions (either the ACT ONE specification or
the list of processes can be empty). No local declarations are allowed. When a specification is
entered, the semantics attribute is set to a new module built as follows: first, the ACT ONE part
of the specification is translated to a functional module; then, equations defining the extraction of
variables and substitution are added (as explained in Section 7.3.1); the resulting module is joined with
the metarepresentation of module LOTOS-SEMANTICS; and, finally, an equation defining the constant
context (Section 7.2.2) with the definitions of processes given in the specification is added. The
lotosProcess attribute is also updated to the behaviour expression in the introduced specification
(after having converted it to a term of sort BehExp), and the rest of attributes are initialized.

rl [spec]
< 0 : X@ToolState |
input : (’specification__behaviour_where_endspec[’token[T],
™,70°,T°°°D),

output : nil,

semantics : SemM, lotosProcess : T1,

transitions : TS,

trace : T3,

condition : T4, Atts >

=> < 0 : X@ToolState | input : nilTermList,
output : (’\n ’Introduced ’specification getName(T) ’\n),
semantics : addEquationSet(eq ’context.Context =
parseProcDeclList (T’’’
addDecls(translateType(T’), SYN)) .,
addDecls (SEM, addOperSubs(
addOpervars (translateType(T’))))),
lotosProcess : parseProcess(T’’,
addDecls(translateType(T’), SYN),mt),

transitions : mt,
trace : ’nil.Trace,
condition : ’true.Bool, Atts > .

Tool commands are handled by rules as well. For example, there is a rule that handles the
show transitions command. It modifies the transitions attribute by using an operation which
receives a module with the semantics implementation (extended with the syntax and semantics of
data expressions) and a term ¢ representing a behaviour expression, and returns the sequence of terms
representing the possible transitions of ¢. It uses the operation metaSearch that represents at the
metalevel the search command used in Section 7.2.3.

7.4.3 The LOTOS tool environment

Input/output of specifications and of commands is accomplished by the predefined module LOOP-MODE
[16], that provides a generic read-eval-print loop. This module has an operator [_,_,_] that can
be seen as a persistent object with an input and output channel (the first and third arguments,
respectively), and a state (given by its second argument). We have complete flexibility for defining
this state. In our tool we use an object of the ToolState class. When something is written in the
Maude prompt enclosed in parentheses it is placed in the first slot of the loop object, as a list of quoted
identifiers. Then it is parsed by using the adequate grammar, and the parsed term is put in the input
attribute of the tool state object. Finally, the rules describing the tool state handling process it. The
output is handled in the reverse way, that is, the list of quoted identifiers placed in the third slot of
the loop is printed on the terminal.

63



7.5 An execution example

We give an example of an interaction with the LOTOS tool. Although we use here a very simple
example, we have used the tool to execute larger examples [69], including the Alternating Bit Protocol
and the Sliding Window Protocol (with more than 550 lines of code) [67]. Our tool has proved to be
quite practical, giving the answer to the entered commands in a few milliseconds.

Maude> (specification SPEC
type Naturals is
[as shown above]

endtype
behaviour
h ! 0; stop [1 C g! (s(0)) ; stop
Il gl
g?x: Nat ; h ! (x + s(0)) ; stop )
endspec)

Maude> (show transitions .)

Trace : nil

Condition : true

TRANSITIONS :

1. {true}{h O}stop

2. {x = s(0)}g s(0)}stop I[gll h ! s(s(0)); stop

Maude> (cont 2 .)

Trace : g s(0)

Condition : x = s(0)

TRANSITIONS :

1. {true}{h s(s(0))}stop |[gl| stop

Maude> (cont .)

Trace :(g s(0))(h s(s(0)))
Condition : x = s(0)

No more transitiomns .

7.6 Comparison with other LOTOS tools

The Concurrency Workbench of the New Century (CWB-NC) [19] is an automatic verification tool
where systems in several specification languages can be executed and analyzed. Regarding LOTOS,
CWB-NC accepts Basic LOTOS, because it does not support value-passing process algebras. The
design of the system exploits the language-independence of its analysis routines by localizing language-
specific procedures, which enables users to change the system description language by using the Process
Algebra Compiler, that translates the operational semantics definitions into SML code. We have
followed a similar approach, although we have tried to keep the semantics representation at a very
abstract level, without losing executability. We have also implemented the semantics of the Hennessy-
Milner modal logic for CCS (Section 6.4) and the subset of FULL [9] corresponding to this logic
for LOTOS. Both implementations follow the same idea, using an operation to calculate the one-
step successors of a process, which in turn uses the operational semantics definitions. Thus, the
implementation of the formal analysis algorithm, that is, the representation in Maude of the modal
logic semantics, is the same in both cases, resulting in similar achievements as the CWB-NC on keeping
separated the language-specific features from the general ones.

The Caesar/Aldebaran Development Package (CADP) [29] is a toolbox for protocol engineering,
with several functionalities, from interactive simulation (as we do in our tool) to formal verification. In
order to support different specification languages, CADP uses low-level intermediate representations,
which forces the implementer of a new semantics to write compilers that generate these representations.
CADP has already been used to implement FULL [8], although with the severe restrictions to finite
types and to the standard semantics of LOTOS instead of the symbolic one in which FULL is based.
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8 'Transitions as judgements

As we mentioned in the introduction, a very general possibility to represent in rewriting logic an
operational semantics consists in mapping an inference rule of the form

S1...5,
So

into a rewrite rule of the form Sy — 57 ....S,, that rewrites multisets of judgements going from the
conclusion to the premises, so that rewriting with these rewrite rules corresponds to searching for a
proof in a bottom-up way. We summarize here the main ideas used in this approach, where transitions
become judgements and inference rules become rewrites. To illustrate the ideas we use the evaluation
semantics of Fpl presented in Section 3.2. An implementation of the CCS operational semantics and
the Hennessy-Milner modal logic using this approach can be found in [71].

We can use directly the modules FPL-SYNTAX (with the syntax of Fpl), AP (with the definition of the
application operation Ap used by the semantics), and ENV (with the definition of the environments for
variables) given in Section 3.1, since they are independent of the operational semantics representation.

In order to represent the semantic rules, a judgement D, p - e =>4 v is represented by a term
D,rho |- e ==>A v of sort Judgement, built by means of the following operator (it is important not
to confuse the arrow which is part of the operator with the arrow in a rewrite rule):

sort Judgement .
op _,_|-_==>A_ : Dec ENV Exp Num -> Judgement [prec 50] .

In general, a semantic rule has a conclusion and a set of premises, each one represented by means
of a judgement. Thus we need a data type for representing sets of judgements:

sort JudgementSet .

subsort Judgement < JudgementSet .

op emptyJS : -> JudgementSet .

op __ : JudgementSet JudgementSet -> JudgementSet [assoc comm id: emptyJS prec 60]

The union constructor is written with empty syntax (__), and declared associative (assoc), com-
mutative (comm), and with the empty set as identity element (id: emptyJS). Matching and rewriting
take place modulo such properties, allowing in this way a more abstract treatment of syntax.

A semantic rule is implemented as a rewrite rule where the singleton set consisting of the judge-
ment representing the conclusion is rewritten to the set consisting of the judgements representing
the premises. Axiom schemas (semantic rules without premises), like CR or VarR in Figure 2, are
represented by means of rewrite rules that rewrite the representation of the conclusion to the empty
set of judgements. If the semantic rule has a side condition, it is represented as a Boolean condition
in a conditional rewrite rule. Next we show some examples:!

rl [CR] : D,rho |- n==>An

emptyJS .
crl [VarR] : D,rho |- x ==>A v

emptyJS
if v == rho(x) .
crl [OpR] : D,rho |- e op e’ ==>A v’’

D,rho |- e ==>A v
D,rho |- e’ ==>A v’
if v’’ == Ap(op, v, v’) .

rl [IfR1] : D,rho |- If be Then e Else e’ ==>A v

!By using the fact that text beginning with --- is a comment in Maude, the rules are displayed in such a way as to
emphasize the correspondence with the usual presentation in textbooks (although in this case the conclusion is above
the horizontal line).
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D,rho |- be ==>B T
D,rho |- e ==>A v .
rl [IfR2] : D,rho |- If be Then e Else e’ ==>A v’

D,rho |- be ==>B F
D,rho |- e’ ==>A v’ .

Notice how rules VarR and OpR have suffered a modification in order to avoid patterns like rho (x)
or Ap(op, v, v’) in the conclusion (lefthand side of the rewrite rule). They are instead used in a
side condition.

In this way, we start with a transition to be proved valid and we work backwards using the rewriting
process, maintaining the set of transitions that have to be fulfilled in order to prove the correctness
of the initial transition. The initial transition can be rewritten to the empty set if and only if it is a
valid transition in the operational semantics.

However, we found two problems while working with this approach. The first one is that sometimes
new variables appear in the premises which are not present in the conclusion (for example, in rule OpR
above v and v’ are new variables in the righthand side). Rules of this kind cannot be directly used by
the Maude default interpreter; they can only be used at the metalevel using a strategy to instantiate
the extra variables. The second problem is that sometimes several rules can be applied to rewrite a
judgement, but in general, not all of the possibilities lead to an empty set of judgements. So we have
to deal with the whole computation tree of possible rewrites of a judgement, searching to see if one of
the branches leads to emptyJS.

In [71] we presented general solutions to these problems by modifying the semantics representation
(at the object level) and controlling the rewriting process by means of a strategy at the metalevel.

The presence of new variables was solved by using the concept of explicit metavariables presented
in [61] in a very similar context, which make explicit the lack of knowledge that new variables in
the righthand side of a rewrite rule represent. The semantics with explicit metavariables has to
bind them to concrete values when these values become known. Thus, we introduced in the semantics
representation mechanisms to deal with these bindings and propagate them to other judgements where
the bound metavariable may be present. The modified representation also has rules with new variables
in the righthand side, but now they are localized. The strategy that controls the rewriting process
(see below) is in charge of instantiating these variables in order to build new metavariables.

The problem of non-deterministic application of rewrite rules was solved by a general search strat-
egy defined at the metalevel. The strategy traverses the conceptual tree of all possible rewrites of a
term, built by using the rewrite rules representing the semantics, searching for the term representing
the empty set of judgements. If it is found, the transition represented at the root of this tree is a valid
semantic transition.

In [71], for the CCS case, we also extended the operational semantics implementation by including
metavariables as processes (before that, we only needed metavariables as actions). If we start the
search strategy with a judgement where the process in the righthand side of the CCS transition is a
metavariable, like in P -- a --> 7P, and the search reaches the empty set, then the metavariable 7P
has to be bound to one of the one-step successors of the process in the lefthand side, P, after performing
action a. By extending the search strategy to find not only the first way to reach the empty set, but
all the possible ways, we implemented an operation that returns all the successors of a process after
performing a given action. This operation was then used to implement the Hennessy-Milner modal
logic for CCS processes [63], by following the same techniques for dealing with new variables and with
non-determinism as in the CCS semantics, that is, by defining rewrite rules that rewrite a modal logic
judgement P = ® into the set of judgements which have to be satisfied (as specified by the logic’s
semantics) [71]. The search strategy has to be used again, now to check if a modal logic judgement is
true. Each time the strategy is used, the module with the rewrite rules that defines the search tree has
to be metarepresented. Thus, we obtained three levels of representation. The CCS semantics rules are
in the first level. They are controlled by the search strategy at the second level, where the operation
that returns all the successors of a process and the modal logic semantics are defined. Finally, the
modal logic semantics is controlled by the search strategy at the third level.
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8.1 Comparison with the transitions as rewrites approach

The transitions as judgements approach has a marked role as prover, in which the rewriting process
corresponds to finding a proof of the initial judgement being rewritten. Intuitively, the idea is that
we start with a transition to be proved valid and we work backwards using the rewriting process in
a goal-directed way, maintaining the set of transitions that have to be fulfilled in order to prove the
correctness of the initial transition. When this set is empty we can conclude that the initial transition
is a correct transition, that is, the initial transition can be rewritten to the empty set if and only if it
is a valid transition in the operational semantics.

On the other hand, the transitions as rewrites approach leads us to implementations with a marked
role as interpreters, where given an environment and an expression, rules rewrite them to the value
they are reduced by the operational semantics.

However, Maude allows us to use either implementation in either role, like a prover or like an
interpreter. The use of metavariables to solve the problem of new variables in the righthand side
of a rule (as mentioned above), as well as the adaptation of the representation to deal with those
metavariables, has as a lateral effect that we can use the obtained representation using the transitions
as judgements approach like an interpreter that calculates, given an expression, the value to which it is
evaluated, without having to start with a complete judgement that includes this value. If, for example,
we want to evaluate expression e with a set of declarations D and in an environment rho, we can rewrite
the judgement D,rho |- e ==>A ?(’result) where ?(’result) is a metavariable. In the rewriting
process of this judgement, the metavariable will be bound to the result of evaluating e. In Section 3.2
we saw how the search command is useful to use the transitions as rewrites implementation as a
prover, where we can check if a given judgement is derivable from the semantics rules.

In our opinion the implementation following the transitions as rewrites approach has several ad-
vantages. This implementation is closer to the mathematical, logical presentation of the semantics.
An operational semantics rule establishes that the transition in the conclusion is possible if the tran-
sitions in the premises are possible, and that is precisely the interpretation of a conditional rewrite
rule with rewrite conditions. The alternative approach needs auxiliary structures like the multisets
of judgements to be proved valid and mechanisms like the generation of new metavariables and their
propagation when their concrete values become known. This forced us to implement at the metalevel
a search strategy that checks if a given multiset can be reduced to the empty set and generates new
metavariables each time they are needed. It is the necessity of new metavariables what makes the
strategy unavoidable. We could not use the search command of Maude 2.0, because it cannot handle
rewrite rules with new variables in the righthand side whenever they are not bound in any of the
conditions, and that is what happens in this kind of implementations [71]. With the transitions as
rewrites approach the necessity of searching appears in the rewrite conditions, but the Maude 2.0
system solves the problem, because it is able to handle these conditions together with new variables
bound in some condition.

There are also differences found in the things that are done at the object level (level of the
semantics representation) and at the metalevel (by using reflection). In the transitions as judgements
approach, the search strategy traverses the conceptual tree with all the possible rewrites of a term,
moving continuously between the object level and the metalevel. In the implementations described in
this paper, the search occurs completely at the object level, which makes it considerably faster and
simpler.

9 Related work

We can find in the literature several works dedicated to the representation and implementation of
operational semantics. We cite here some of the most related to our work.

Probably the work most closely related to ours is the one by Christiano Braga in his PhD. thesis [4],
where he describes an interpreter for MSOS specifications [5] in the context of Peter Mosses’s modular
structural operational semantics [53]. In the interpreter implementation the approach of transitions
as rewrites is used, by making an extension of Maude implemented using the reflective features of
Maude itself that allows conditional rules with rewrites in the conditions. We have used Maude 2.0,
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obtaining a considerable efficiency enhancement. This line of work has been continued very recently
by integrating some of the methods that we have proposed in this paper and others in order to develop
a general method to achieve modularity of semantic definitions of programming languages specified as
rewrites theories [6].

As we have already mentioned at the beginning of this paper, there is a rich tradition of using
rewriting logic to give semantic definitions for languages using a variety of styles, including the lambda
calculus [48, 60], Prolog and languages based on narrowing like BABEL [74], the UNITY language [50],
the m-calculus [73, 60, 65], the concurrent logic programming language GAEA [43], the programming
language for active networks PLAN [75, 62], a UML metamodel [66, 30, 31], the specification language
for cryptographic protocols CAPSL [21], the mobile agents system DaAgent [1], the Maude extension
for mobile computations Mobile Maude [25], and the Resource Description Framework (RDF) for the
semantic web [3]. For a more exhaustive bibliography about this subject we refer to the paper [49].
With the exception of the more recent paper [65], that applies to the m-calculus the techniques that
we have applied to CCS in Section 6, none of the other papers use rewrite rules with rewrites in the
conditions, because those rules could not be executed in previous versions of Maude.

Perhaps one of the first attempts to get direct implementations for operational semantics was Typol
[23], a formal language for representing inference rules and operational semantics. Typol programs
were compiled to Prolog to build executable type ckeckers and interpreters from their specifications
[22]. Although some of our implementations follow in some respects the logic programming style, a
great advantage of using Maude consists in the possibility of working, on the one hand, with data
types defined by the user, and on the other hand, with algebraic specifications modulo equational
axioms. Moreover, we could use other strategies different from depth-first search, even keeping the
same underlying specification.

Some disadvantages of Typol are its inefficiency and the fact that the implementation of specifica-
tions of structural operational semantics in Prolog is not attractive, due to the lack of an appropriate
type system in Prolog (some authors have used the higher order language AProlog [28] to avoid this
problem). For all these reasons, the language RML (Relational Meta-Language) [56, 57] was designed,
a language for the executable specification of natural semantics. In this study, properties of natural
semantics specifications were identified as determinable in a static way, allowing some optimizations
in the implementation. RML has a strong type system in the style of Standard ML, and it supports
inference rules like those in natural semantics, and data type definitions by means of structural in-
duction. Specifications in RML are translated into an intermediate representation, which can then
be easily optimized and implemented, following the style CPS (Continuation-Passing Style). This
intermediate representation is finally compiled to efficient C code.

Theorem provers like Isabelle/HOL [55] or Coq [42] have also been used to build models of languages
from their operational semantics. Isabelle/HOL has been used by Nipkow [54] to formalize operational
and denotational semantics of programming languages. Other logical frameworks and theorem provers
have also been used to represent inference systems. The interactive proof development environment
Coq [42], based on the Calculus of Constructions extended with inductive types, has been used to
represent the m-calculus [32, 40] and the p-calculus [59] applied to CCS. Coq is used to encode natural
semantics in [64]. In these works the approach is different from ours, since instead of obtaining
executable representations, they focus on getting models with which metaproperties can be verified.

10 Conclusions and future work

In this paper we have shown how the transitions as rewrites approach can be used to implement a
wide variety of structural operational semantics in Maude, an executable semantic framework.
Sometimes we have needed to make precise some details in the mathematical definition of a se-
mantics, as when an ellipsis “...” appears in the premises of a semantic rule. The Maude facilities for
defining syntactic operators, including the associativity and identity attributes, and pattern match-
ing modulo these properties, have allowed us to make precise those details in a clear and easy way,
resolving, for example, the non-deterministic choice of one of the arguments of a function call to be
reduced. We have also been able to define, at the same level of the semantics, the syntactic substitu-
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tion operation, used in several of the semantics definitions, including the generation of new variables
(not ocurring in the expression being evaluated) in order to avoid free variable capture.

In the Mini-ML example, we have found a semantic rule (that one corresponding to the letrec
operator) that cannot be implemented directly. The problem is that the original semantics is not so
operational as it might seem, since in some moment we need to guess the value we want to calculate in
order to infer it. Certainly, this kind of semantic rule is not usual, because its meaning is not intuitive.
The solution consists in finding an alternative semantic rule, an implementable one.

After successfully representing a semantics, we have shown how the Maude commands can be used
to obtain several kinds of information. When a higher control of the possible transitions is needed,
as in the implementation of the Hennessy-Milner modal logic for CCS, reflection and the META-LEVEL
predefined module provide a valuable tool. Moreover, we can implement complete tools that execute
the user language and hide the concrete representation of the semantics, as we have done for Full
LOTOS.

We want to study now how to analyze and prove properties about the obtained semantics rep-
resentations, such as confluence or termination. These properties do not refer to concrete programs
written in the language whose semantics is represented; they are instead metaproperties applicable to
every program in general. Most of them are proved by structural induction on the rules that define
the semantics [36]. In this respect, we intend to study extensions of the ITP theorem prover [13].

Based on the symbolic semantics for LOTOS used in Section 7, a symbolic bisimulation [10]
and a modal logic FULL [9] have been defined. We plan to extend our tool so that we can check
if two processes are bisimilar, or if a process satisfies a given modal logic formula. We have already
implemented a subset of FULL without data values (following the same techniques we use to implement
the Hennessy-Milner modal logic for CCS processes in Section 6.4), and we have integrated it with
our tool. The part of the logic with data values deserves more study, and we think that some kind
of theorem proving will be needed. Rewriting logic and Maude have been proved highly valuable also
for these subjects [12].

In joint work with José Meseguer, we are designing a strategy language that allows specifying
which strategy has to be used in order to rewrite a term. Basic strategy expresions will be rule labels,
meaning that a particular rule has to be applied. When the rule is conditional, with rewrites in the
conditions, the strategy expression may describe how each of the conditions has to be resolved. If we
have a rewrite condition t => t’ the strategy would say how t has to be rewritten in order to find
a term that matches t’; in particular, it will say which rewrite rules can be applied in the rewriting
process. Basic strategies are combined to build greater strategies by union, concatenation, disjunction
(by means of a generalized if-then-else), iteration, etc.

With this language we will be able to solve (in a different, perhaps more elegant way) the problems
we found in Section 3.3 (when defining the reflexive, transitive closure of the computation semantics
relation for Fpl) and in Section 6.2 (when defining the reflexive, transitive closure of the CCS transition
relation). We foresee that this strategy language will be quite useful in the implementation and
execution of the parallel functional language Eden [7, 39], where we intend to study how different
execution strategies influence the semantics properties.

This strategy language will be applicable not only to operational semantics representations, but
to executable specifications in general.
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