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Abstract—Coherent singular beams, in particular optical vor-
tices, are attractive for different applications: free-space optical
communication, imaging, particle manipulation, etc. However,
their deformation during propagation through random media
and speckle noise forced to look to their partially coherent
analogues. The singularities of partially coherent beams asso-
ciated with zero points of the cross-correlation function have
been theoretically predicted and experimentally demonstrated for
some particular cases of Laguerre-Gaussian (LG) and Hermite-
Gaussian (HG) Schell-model beams (SMBs). Here we establish
a theoretical background for explanation of these singularities
evolution during propagation of the SMBs associated with struc-
turally stable Hermite-Laguerre-Gaussian modes, which include
as a particular case the LG and HG ones. The derived a closed-
form expression for the evolution of the mutual intensity of such
beams allows easily calculating the intensity distribution and
cross-correlation function at every plane of paraxial optical sys-
tem. The birth and evolution of the cross-correlation singularities
is analyzed. Their structure in far field serves as a fingerprint
of the associated mode while the intensity distribution may not
resemble the mode shape. The robustness of these singularities
can be exploited for information encoding and random medium
monitoring.

I. INTRODUCTION

Coherent structurally stable optical beams, in particular
Gaussian optical vortices, which propagate without changing
their form (apart from scaling and additional quadratic phase)
are nowadays applied in different areas: free-space optical
communication, imaging, particle manipulation, etc. Their
easily recognized intensity patterns with typical for every
beam zero lines associated with phase singularities make them
attractive for information encoding. The Hermite-Laguerre-
Gaussian (HLG) modes which include Hermite-Gaussian
(HG), Laguerre-Gaussian (LG) ones are the mostly used beams
for this purpose. However, their deformation during propaga-
tion through random media and speckle noise forced to look
to their partially coherent analogues. Scalar paraxial partially
coherent beams are described by mutual intensity (MI) defined
as Γ(r1, r2) = 〈f (r1) f∗ (r2)〉 [1] where f(·) is a complex
field amplitude, r = (x, y)t is a position vector at the plane
transverse to the beam propagation direction z and the brackets
〈·〉 stand for ensemble averaging. In the case of Gaussian
Schell model beams (SMBs) [2] the MI in the input plane is
written as Γ(R + r
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where the coordinates R = 1
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is a degree of
spatial coherence (DoC) which has a typical Gaussian form,
and fc (•) is the complex field amplitude of an associated
coherent beam (HLG mode in our case). Thus, for r = 0
the MI corresponds to the intensity distribution I(R) =
Γ(R,R) = |fc (R)|2 , while for R = 0 the cross-correlation
function (CCF) used for the coherence singularities analysis is
obtained C(r) = Γ(r,−r) = fc (r) f∗c (−r) γ (2r). The HLG
modes considered here are defined as [3]

HLGn,m(r |β) =

√
2

2n+mn!m!
exp
(
−π |r|2

)
HLn,m(r |β),

(1)
where

HLn,m(x, y |β) = (−i)m(cos 2β)
n+m

2

×
min(n,m)∑
k=0

(−2i tan 2β)kk!

(
m
k

)(
n
k

)
×Hn−k

(√
2π
x cosβ + iy sinβ√

cos 2β

)
×Hm−k

(√
2π
y cosβ + ix sinβ√

cos 2β

)
. (2)

In particular, for β = 0 and β = π/4 they are reduced
to the HG and the LG modes correspondingly. Taken into
account the symmetry of the HLG modes, HLn,m(−r |β) =
(−1)n+mHLn,m( r |β), it is easy to see that in the input plane
the coherence singularities (zero points of the CCF) coincide
with zero intensity points of the HLG mode since C(r) =
(−1)n+m |HLGn,m(r |β)|2 γ (2r). These simple expressions
for the MI, the intensity and the CCF hold, however, only in
the input plane and are destroyed during beam propagation.

In general, the spatial correlation singularities of partially
coherent beams in contrast to the coherent ones can exist
in the points where the intensity is not vanished [4]. In
particular, it has been found that in far field the CCF phase
singularity curves for the LG-SMBs have circular form [5],
[6] and the number of such rings is empirically predicted to
be 2p + |l| [7], where p = min(n,m) and l = n − m are
the radial and azimuthal mode indices of the associated LG
mode. It has been also shown that the HG-SMBs have line-
like CCF singularities and that their number increases during
beam propagation [8]. However, a theoretical background for
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Figure 1. Evolution of the zero points of the CCF for fixed value of x = 0 during propagation (yα-planes, where α is a horizontal coordinate and y is
a vertical one) for (a) HG-SMB HLG0,3( r | 0) and (b) LG-SMB HLG3,1( r |π/4) for different parameter σ. The input coherence length corresponds to
w/
√
σ, with w being the fundamental Gaussian beam waist. Only positive y coordinate is represented in b) taken into account the rotational symmetry of

the LG-SMB.

explanation of singularity evolution during beam propagation
have not been established. Here, we present a closed-form
expression for the evolution of the mutual intensity of the
HLG-SMBs which allows analyzing the birth and evolution
of the coherence singularities during beam propagation.

II. EVOLUTION OF THE CROSS-CORRELATION FUNCTION
OF THE HLG-SMBS

In order to find the expression for the MI and therefore
the intensity and the CCF evolution during the HLG-SMBs
propagation we as well as in [8] first express the MI through
the ambiguity function (AF) which is presented as a product of
the AF of the HLG mode AHLGn,m(• | β) and the DoC. Note,
that the beam propagation in rotationally symmetric system
is primary described by the symmetric fractional Fourier
transform (FT) and the HLG modes are its eigenfunctions [9].
Then the AHLGn,m(• | β) does not change during propagation
and the expression for the evolution of the MI can be found
from

ΓHLGn,m(• | β)
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where α is a parameter of the fractional FT (related to the
propagation distance as z = tanα, α ∈ [0, π/2]). Here
dimensionless coordinates are used for simplicity. Finding the
expression for the AHLGn,m(• | β and after long but straight-
forward calculus, which can be found in [10], we derive the

expression for the MI of the HLG-SMB
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where q(α, σ) = 1 + σ sin2 α − iσ sinα cosα. We observe
that the intensity distribution IHLGn,m(• | β) (R|α) obtained
from Eq. (4) for r = 0 is expressed as a superposition of the
intensity distributions of the HLG modes of equal or lower
indices and does not have zeros (note, that the roots of the
HL polynomials never coincide) except of the input plane
corresponding to α = 0 where only one mode is present in
the sum. On the other hand, the Eq. (4) for R = 0 is reduced
to the CCF :
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Here the polynomial symmetry has been used again. The
analysis of the CCF singularities is related to search of the
real roots of the 2D polynomial of order 2(n + m) written
as a sum in this equation. Even for the same HLG mode the
form of the root (and therefore singularity) curves changes
depending on the parameters α and σ. From the symmetry
of the HG and LG modes it follows that singularity curves
are lines and rings correspondingly. In Fig.1a and Fig.1b the
evolution of zero points of CCF for fixed value of x = 0
during propagation (yα-plane) is displayed for HG-SMB (a)
and LG-SMB (b), correspondingly. It can be seen that the
singularity points appear and change their position during
beam propagation. While in far field, α = π/2, the number
and position of the singularity points are almost independent
of the coherence parameter σ they are significantly vary during
propagation. The singularity lines of the more complex forms
are observed for general HLG-SMB [11].

III. DISCUSSION

The derived equation for the MI evolution during HLG-
SMB propagation through rotationally symmetric systems
apart from its fundamental value is useful for beam analysis.
Indeed, it allows predicting the intensity distortion during
propagation and demonstrating that every HLG-SMB has its
own fingerprint recorded in the form and number of the
CCF singularity curves in far field. Taken into account the
robustness of the partially coherent beam during propagation
through random medium it might be interesting to evaluate the
possibility of information encoding in CCF singularity curves
rather than in phase singularities of the coherent modes. On the
other side if the form of the CCF singularities is significantly
alternated by the random medium then the analysis of these
can be used for medium monitoring.
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