Globulelike Conformation and Enhanced Diffusion of Active Polymers



Downloads per month over past year

Bianco, Valentino and Locatelli, Emanuele and Malgaretti, Paolo (2018) Globulelike Conformation and Enhanced Diffusion of Active Polymers. Physical Review Letters, 121 (21). p. 217802. ISSN 1079-7114; 0031-9007

[thumbnail of Globulelike Conformation and Enhanced Diffusion of Active Polymers.pdf]

Official URL:


We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that, when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coil-to-globulelike transition, highlighted by a marked change of the scaling exponent of the gyration radius. Concurrently, the diffusion coefficient of the center of mass of the polymer becomes essentially independent of the polymer size for sufficiently long polymers or large magnitudes of the self-propulsion. These effects are reduced when the self-propulsion of the monomers is not bound to be tangent to the backbone of the polymer. Our results, rationalized by a minimal stochastic model, open new routes for activity-controlled polymers and, possibly, for a new generation of polymer-based drug carriers.

Item Type:Article
Subjects:Sciences > Physics > Materials
Sciences > Physics > Chemistry, Physical and theoretical
Sciences > Chemistry > Physics
Sciences > Chemistry > Computer science
ID Code:50446
Deposited On:18 Dec 2018 10:05
Last Modified:19 Dec 2018 08:57

Origin of downloads

Repository Staff Only: item control page