Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes



Downloads per month over past year

Barrio Uña, Juan Abel and Contreras González, José Luis and Domínguez Díaz, Alberto and Carreto Fidalgo, David Friedrich and Fonseca Gonzáez, Victoria and Hoang, Kim Dinh and López Moya, Marcos and Nievas Rosillo, Mireia and Peñil del Campo, Pablo and Saha, Lab and otros, ... (2018) Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes. Monthly notices of the royal astronomical society, 481 (2). pp. 2479-2486. ISSN 0035-8711

[thumbnail of BarrioUña06preprint.pdf]

Official URL:


Fast radio bursts (FRBs) are bright flashes observed typically at GHz frequencies with millisecond duration, whose origin is likely extragalactic. Their nature remains mysterious, motivating searches for counterparts at other wavelengths. FRB 121102 is so far the only source known to repeatedly emit FRBs and is associated with a host galaxy at redshift z similar or equal to 0.193. We conducted simultaneous observations of FRB 121102 with the Arecibo and MAGIC telescopes during several epochs in 2016-2017. This allowed searches for millisecond time-scale burst emission in very-high-energy (VHE) gamma-rays as well as the optical band. While a total of five FRBs were detected during these observations, no VHE emission was detected, neither of a persistent nature nor burst-like associated with the FRBs. The average integral flux upper limits above 100 GeV at 95 percent confidence level are 6.6 x 10(-12) photons cm(-2) s(-1) (corresponding to luminosity L-VHE < 10 (45) erg s(-1)) over the entire observation period, and 1.2 x 10(-7) photons cm(-2) s(-1 )(L-VHE < 10 (49) erg s( -1)) over the total duration of the five FRBs. We constrain the optical U-band flux to be below 8.6 mJy at 5 sigma level for 1-ms intervals around the FRB arrival times. A bright burst with U-band flux 29 mJy and duration similar to 12 ms was detected 4.3 s before the arrival of one FRB. However, the probability of spuriously detecting such a signal within the sampled time space is 1.5 percent (2.2, post-trial), i.e. consistent with the expected background. We discuss the implications of the obtained upper limits for constraining FRB models.

Item Type:Article
Additional Information:

© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. Artículo firmado por 157 autores. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015- 69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015- 69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6- 6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015- 71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06- 9782 and the University of Rijeka Project, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq and FAPERJ. SI thanks support from JSPS KAKENHI Grant Number JP17K05460. The work of K.M. is partially supported by Alfred P. Sloan Foundation and NSF grant No. PHY-1620777.

Uncontrolled Keywords:Fast radio-burst; Reionization history; Major upgrade; Crab-nebula; Host galaxy; Environment; Pulses; Model; Afterglows; Dispersion
Subjects:Sciences > Physics > Nuclear physics
ID Code:50879
Deposited On:13 Feb 2019 11:18
Last Modified:13 Feb 2019 11:34

Origin of downloads

Repository Staff Only: item control page