Impacto
Downloads
Downloads per month over past year
Cobos, Fernando and Kühn, Thomas and Sickel, Winfried (2019) On optimal approximation in periodic Besov spaces. Journal of Mathematical Analysis and Applications . ISSN 0022-247X (In Press)
Preview |
PDF
337kB |
Official URL: https://doi.org/10.1016/j.jmaa.2019.02.027
Abstract
We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L∞-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Análisis matemático |
Palabras clave (otros idiomas): | Mathematical analysis, Approximation numbers, Besov Spaces |
Subjects: | Sciences > Mathematics Sciences > Mathematics > Algebra Sciences > Mathematics > Mathematical analysis |
ID Code: | 51180 |
Deposited On: | 12 Feb 2019 13:25 |
Last Modified: | 13 Feb 2019 09:02 |
Origin of downloads
Repository Staff Only: item control page