Publication:
Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film

Research Projects
Organizational Units
Journal Issue
Abstract
Purpose: Dry eye (DE) includes a group of diseases related to tear film disorders. Current trends for DE therapy focus on providing lipid components to replace the damaged lipid layer. Formulations that contain aqueous and mucin like compounds may have additional therapeutic benefits for DE patients. The aim of this work was to design and evaluate novel formulations having the potential to become topical treatment for DE. Methods: Unpreserved liposomal formulations composed of phosphatidylcholine (PC), cholesterol, and α tocopherol (vit E) were prepared by the thin-film hydration technique. Formulations were characterized in terms of liposome size, pH, surface tension, osmolarity, and viscosity. In vitro tolerance assays were performed on macrophage, human corneal and conjunctival cell lines at short and long term exposures. In vivo ocular tolerance was studied after instillation of the formulation. Results: The mean liposome size was less than 1 μm and surface tension <30 50 mN/m for all formulations. The final liposomal formulation (PC:cholesterol:vit E in a ratio 8:1:0.8) had physiological values of pH (6.45 ± 0.09), osmolarity (289.43 ± 3.28 mOsm), and viscosity (1.82 ± 0.02 mPa·s). Cell viability was greater than 80% in the corneal and conjunctival cells. This formulation was well tolerated by experimental animals. Conclusions: The unpreserved liposomal formulation has suitable properties to be administered by topical ophthalmic route. The liposome-based artificial tear had good in vitro and in vivo tolerance responses. This formulation composed of a combination of liposomes and bioadhesive polymers may be employed successfully as a tear film substitute in DE therapy.
Description
Unesco subjects
Keywords
Citation
1. Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol. 2008;41:21-35. 2. Gipson IK. The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2007;48:4390; 4391- 4398. 3. Spurr-Michaud S, Argüeso P, Gipson IK. Assay of mucins in human tear fluid. Exp Eye Res. 2007;84:939-950. 4. Green-Church KB, Butovich I, Willcox M, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest Ophthalmol Vis Sci. 2011,52:1979-1993. 5. Butovich IA. The Meibomian puzzle: combining pieces together. Prog Retin Eye Res. 2009;28:483-498. 6. Rantamaki AH, Seppanen-Laakso T, Oresic M, Jauhiainen M, Holopainen JM. Human tear fluid lipidome: from composition to function. PLoS One. 2011;6:e19553. 7. Saville JT, Zhao Z, Willcox MD, Ariyavidana MA, Blanksby SJ, Mitchell TW. Identification of phospholipids in human meibum by nano-electrospray ionisation tandem mass spectrometry. Exp Eye Res. 2010;92:238-240. 8. Ham BM, Jacob JT, Keese MM, Cole RB. Identification, quantification and comparison of major non-polar lipids in normal and dry eye tear lipidomes by electrospray tandem mass spectrometry. J Mass Spectrom. 2004;39:1321- 9. McCulley JP, 494 Shine W. A compositional based model for the tear film lipid layer. Trans Am Ophthalmol Soc. 1997;95:79–93. 10. Rosenfeld L, Cerretani C, Leiske DL, Toney MF, Radke CJ, Fuller GG. Structural and rheological properties of meibomian lipid. Invest Ophthalmol Vis Sci. 2013;54:2720-2732. 11. Nagyová B, Tiffany, JM. Components responsible for the surface tension of human tears. Curr Eye Res. 1999;19:4-11. 12. McCulley J, Shine W. The lipid layer: the outer surface of the ocular surface tear film. Biosci Rep. 2001;21: 407-418. 13. McCulley JP, Shine WE. Meibomian gland and tear film lipids: structure, function and control. Adv Exp Med Biol. 2002;506:373-378. 14. Rosenfeld L, Fuller GG. Consequences of interfacial viscoelasticity on thin film stability. Langmuir. 2012;28:14238-14244. 15. Schuett BS, Millar TJ. Lipid component contributions to the surface activity of meibomian lipids. Invest Ophthalmol Vis Sci. 2012;53:7208-7219. 16. Millar TJ, King-Smith PE. Analysis of Comparison of human Meibomian lipid films and mixtures with cholesteryl esters in vitro films using high resolution color microscopy. Invest Ophthalmol Vis Sci. 2012;53:4710-4719. 17. Herok GH, Mudgil P, Millar TJ. The effect of Meibomian lipids and tear proteins on evaporation rate under controlled in vitro conditions. Curr Eye Res. 2009;34:589-597. 18. Baudouin C. Detrimental effect of preservatives in eyedrops: implications for the treatment of glaucoma. Acta Ophthalmol. 2008;86:716-726. 19. Ammar D, Noecker R, Kahook 527 M. Effects of benzalkonium chloride528 preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther. 2010;27:837-845. 20. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: The good, the bad and the ugly. Prog Retin Eye Res. 2010;29:312-334. 21. Bangham AD, Standish, MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238-252. 22. Millar TJ, Tragoulias ST, Anderton PJ, et al. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids. Cornea. 2006;25:91-100. 23. Yasueda S IK, Matsuhisa K, Terayama H, Ohtori A. Evaluation of ophthalmic suspensions using surface tension. Eur J Pharm Biopharm. 2004;Mar;57:377-382. 24. Purslow C, Wolffsohn JS. Ocular surface temperature: a review. Eye Contact Lens. 2005;31:117-123. 25. Budai L, Hajdu M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343:34- 40. 26. Sechoy O, Tissie G, Sebastian C, Maurin F, Driot JY, Trinquand C. A new long acting ophthalmic formulation of carteolol containing alginic acid. Int J Pharm. 2000;207:109-116. 27. Diebold Y, Calonge M, Enríquez de Salamanca A, et al. Characterization of a spontaneously immortalized cell line (IOBA-NHC) from normal human conjunctiva. Invest Ophthalmol Visl Sci. 2003;44:4263-4274. 28. Girón N, Través 561 P, Rodríguez B, et al. Supression of inflammatory responses by labdane-type diterpenoids. Toxicol Appl Pharmacol. 2008; 228: 179-189. 29. Andres-Guerrero V, Vicario-de-la-Torre M, Molina-Martinez IT, Benitez566 del-Castillo JM, Garcia-Feijoo J, Herrero-Vanrell R. Comparison of the in vitro tolerance and in vivo efficacy of traditional timolol maleate eye drops versus new formulations with bioadhesive polymers. Invest Ophthalmol Vis Sci. 2011;52:3548-3556. 30. Scudiero DA, Shoemaker RH, Paul KP, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988:4827-4833. 31. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69:581-593. 32. Saarinen-Savolainen P, Järvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res. 1998;15:1275-1280. 33. Pellinen P, Huhtala A, Tolonen A, Lokkila J, Maenpaa J, Uusitalo H. The cytotoxic effects of preserved and preservative-free prostaglandin analogs on human corneal and conjunctival epithelium in vitro and the distribution of benzalkonium chloride homologs in ocular surface tissues in vivo. Curr Eye Res. 2012;37:145-154. 34. Seibold LK, Ammar DA, Kahook MY. Acute effects of glaucoma medications and benzalkonium chloride on pre-adipocyte proliferation and adipocyte cytotoxicity in vitro. Curr Eye Res. 2012;38:70-74. 35. Enríquez de Salamanca 594 A, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006:1416- 1425. 36. Takeuchi H, Yamamoto H, Toyoda T, Toyobuku H, Hino T, Kawashima Y. Physical stability of size controlled small unilameller liposomes coated with a modified polyvinyl alcohol. Int J Pharm. 1998;164,:103-111 37. Lasic DD. Novel applications of liposomes. Trends Biotechnol. 1998;16:307-321. 38. Yamaguchi M, Ueda K, Isowaki A, et al. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol Pharm Bull. 2009;32:1266-1271. 39. Tiffany JM. The viscosity of human tears. Int Ophthalmol. 1991;15:371- 376. 40. Lemp MA, Baudouin C, Baum J, et al. . The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:75-92. 41. Sweeney DF, Millar TJ, Raju SR. Tear film stability: a review. Exp Eye Res. 2013;117:28-38. 42. Gipson IK. Age-related changes and diseases of the ocular surface and 621 cornea. Invest Ophthalmol Vis Sci. 2013;54:ORSF48-53. 43. Calonge M. The treatment of dry eye. Surv Ophthalmol. 2001;45:S227- S239. 44. Lee SY, Tong L. Lipid-containing lubricants for dry eye: a systematic review. Optom Vis Sci. 2012;89:1654-1661. 45. Hecht G. Ophthalmic preparations. In: Remington (ed), The Science and Practice of Pharmacy: Lippincot and Williams; 2001:821-833. 46. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4:297-305. 47. Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm. 2001; Jul 31:55-68. 48. Baeyens V, Gurny R. Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharm Acta Helv. 1997;72:191-202. 49. Carney LG, Mauger TF, Hill RM. Buffering in human tears: pH responses to acid and base challenge. Invest Ophthalmol Vis Sci. 1989 Apr;30:747-754. 50. Yamada M, Kawai M, Mochizuki H, Hata Y, Mashima Y. Fluorophotometric measurement of the buffering action of human tears in vivo. Curr Eye Res. 1998;October ;17:1005-1009. 51. Holly FJ, Lemp MA. Wettability and wetting of corneal epithelium. Exp Eye Res. 1971;11:239-250. 52. Tiffany JM. Tears in health and disease. Eye. 2003;17:923-926 53. Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78:347-360. 54. Holly FJ, Lemp MA. Wettability and wetting of corneal epithelium. Exp Eye Res. 1971;11:239-250. 55. Glasgow BJ, Marshall G, Gasymov OK, Abduragimov AR, Yusifov TN, Knobler CM. Tear lipocalins: potential lipid scavengers for the corneal surface. Invest Ophthalmol Vis Sci. 1999;40:3100-3107. 56. Mantelli F, Massaro-Giordano M, Macchi I, Lambiase A, Bonini S. The cellular mechanisms of dry eye: from pathogenesis to treatment. J Cell Physiol. 2013;228:2253-2256. 57. Tomlinson A, Khanal S, Ramaesh K, Diaper C, McFadyen A. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci. 2006;47:4309-4315. 58. Gary NF. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol. 2007;52:369-374. 59. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57:1595-1639. 60. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269:1-14. 61. Prieto JG, Pulido MM, Zapico J, et al. Comparative study of hyaluronic derivatives: rheological behaviour, mechanical and chemical degradation. Int J Biol Macromol. 2005;35:63-69. 62. Falcone SJ, Palmeri DM, Berg RA. Rheological and cohesive properties of hyaluronic acid. J Biomed Mater Res A. 2006;76A:721-728. 63. Chong BF, Blank LM, McLaughlin R, Nielsen LK. Microbial hyaluronic acid production. App Microbiol Biotechnol. 2005;66:341-351. 64. Akram M, Shyum S, Gauhar S. Development of new ophthalmic suspension prednisolone acetate 1%. Pak J Pharm Sci. 2010;Apr;23(2):149- 154. 65. Gan L, Han S, Shen J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Inter J Pharm. 2010;396:179-187. 66. Bravo-Osuna I, Noiray M, Briand E, et al. Interfacial interaction between transmembrane ocular mucins and adhesive polymers and dendrimers analyzed by surface plasmon resonance. Pharm Res. 2012;Aug;29:2329-2340. 67. Nakamura S, Okada S, Umeda Y, Saito F. Development of a rabbit model of tear film instability and evaluation of viscosity of artificial tear preparations. Cornea. 2004;23:390-397. 68. Park Y, Cho S, Linhardt RJ. Exploration of the action pattern of Streptomyces hyaluronate lyase using high-resolution capillary electrophoresis. Biochim Biophys Acta. 1997;1337:217-226. 69. Jedrzejas, JM, Mello LV, de Groot BL, Li S. Mechanism of hyaluronan degradation by streptococcus pneumoniae hyaluronate lyase. J Biol Chem. 2002;277:28287-28297. 70. Freeberg FE, Nixon GA, Reer PJ, et al. Human and rabbit eye responses to chemical insult. Fundam Appl Toxicol. 1986;7:626-634. 71. Walker AP. A more realistic animal technique for predicting human eye response. Food Chem Toxicol. 1985;23:175-178. 72. Lambert LA, Chambers WA, Green S, et al. The use of low-volume dosing in the eye irritation test. Food Chem Toxicol. 1993;31:99-103.
Collections