Publication:
The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies

Research Projects
Organizational Units
Journal Issue
Abstract
Pathologies affecting the posterior segment are one of the major causes of blindness in developed countries and are becoming more prevalent due to the increase in society longevity. Sucessful therapy of diseases affecting the back of the eye requires effective concentrations of the active substance mantained during a long period of time in the intraocular target site. Treatment of vitreoretinal diseases often include repeated intravitreous injections that are associated with adverse effects. Local administration of biodegradable microspheres offers an excellent alternative to multiple administrations, as they are able to deliver the therapeutic molecule in a controlled fashion. Furthermore, injection of microparticles is performed without the need for surgical procedures. As most of the retinal diseases are multifactorial, microspheres result especially promising because they can be loaded with more than one active substance and complemented with the inclusion of additives with pharmacological properties. Personalized therapy can be easily achieved by changing the amount of administered microspheres. Contrary to non-biodegradable devices, biodegradable PLA and PLGA microspheres disappear from the site of administration after delivering the drug. Furthermore, microspheres prepared from these mentioned biomaterials are well tolerated after periocular and intravitreal injections in animals and humans. After injection, PLA and PLGA microspheres suffer aggregation behaving like an implant. Biodegradable microspheres are potential tools in regenerative medicine for retinal repair. According to the reported results, presumably a variety of microparticulate formulations for different ophthalmic therapeutic uses will be available in the clinical practice in the near future.
Description
Keywords
Citation
Algvere, P., Bill, A., 1979. Drainage of microspheres and RBCs from the vitreous of aphakic and phakic eyes. Arch Ophthalmol. 97, 1333-1336. Amrite, A.C., Ayalasomayajula, S.P., Cheruvu, N.P., Kompella, U.B., 2006. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 47, 1149-1160. Amrite, A.C., Kompella, U.B., 2005. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 57, 1555-1563. Andrés-Guerrero, V., Zong, M., Mihov, G., Dias, A., Herrero-Vanrell, R., 2013. Dexamethasone sustained delivery from polyesteramide microspheres for intraocular administration. Influence of sterilization. Pan-American Association of Ophthalmology. Pan-American Research Day, Seattle, USA. Andrieu-Soler, C., Aubert-Pouessel, A., Doat, M., Picaud, S., Halhal, M., Simonutti, M., Venier-Julienne, M.C., Benoit, J.P., Behar-Cohen, F., 2005. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis. 11, 1002-1011. Arango-González, B., Ueffing, M., 2013. Preclinical testing of compounds and intraocular drug delivery systems using an organ retinal culture. PANOPTES: Challenges and new perspectives in ophthalmic applications. XXV Symposium of the European Society for Biomaterials, Madrid, Spain. Barcia, E., Herradon, C., Herrero-Vanrell, R., 2005. Biodegradable additives modulate ganciclovir release rate from PLGA microspheres destined to intraocular administration. Lett Drug Des. 2, 184-193. Barcia, E., Herrero-Vanrell, R., Diez, A., Alvarez-Santiago, C., Lopez, I., Calonge, M., 2009. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res. 89, 238-245. Bittner, B., Mader, K., Kroll, C., Borchert, H.H., Kissel, T., 1999. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation. J Control Release. 59, 23-32. Cardillo, J.A., Souza-Filho, A.A., Oliveira, A.G., 2006. Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol. 81, 675-677, 679-681. Chan, I.M., Tolentino, F.I., Refojo, M.F., Fournier, G., Albert, D.M., 1984. Vitreous substitute. Experimental studies and review. Retina. 4, 51-59. Checa-Casalengua, P., Jiang, C., Bravo-Osuna, I., Tucker, B.A., Molina-Martinez, I.T., Young, M.J., Herrero-Vanrell, R., 2011. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 156, 92-100. Checa-Casalengua, P., Jiang, C., Bravo-Osuna, I., Tucker, BA., Molina-Martínez, I.T., Young, M.J., Herrero-Vanrell, R., 2012. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation. Int J Pharm. 436 ,545-54. Chowdhury, D.K., Mitra, A.K., 2000. Kinetics of a model nucleoside (guanosine) release from biodegradable poly(DL-lactide-co-glycolide) microspheres: a delivery system for long-term intraocular delivery. Pharm Dev Technol. 5, 279-285. Conte, B., Bucolo, C., Giannavola, C., Puglisi, G., Giunchedi, P., Conte, U., 1997. Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci. 5, 287-293. Delgado, A., Evora, C., Llabres, M., 1996. Degradation of DL-PLA-methadone microspheres during in vitro release. Int J Pharm. 140, 219-227. Duvvuri, S., Janoria, K. G., Pal, D., Mitra, A. K., 2007. Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther. 23, 264-274. Gaudana, R., Ananathula, H.K., Parenky, A., Mitra A.K., 2010. Ocular Drug Delivery. AAPS J. 12, 348-360. Freitas, S., Merkle, H.P., Gander, B., 2005. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 102, 313-332. Gaudio, P.A., 2004. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm. 12, 169-192. Giordano, G.G., Chevez-Barrios, P., Refojo, M.F., Garcia, C.A., 1995. Biodegradation and tissue reaction to intravitreous biodegradable poly(D,L-lactic-co-glycolic)acid microspheres. Curr Eye Res. 14, 761-768. Giordano, G.G., Refojo, M.F., Arroyo, M.H., 1993. Sustained delivery of retinoic acid from microspheres of biodegradable polymer in PVR. Invest Ophthalmol Vis Sci. 34, 2743-2751. Gomes Dos Santos, A.L., Bochot, A., Doyle, A., Tsapis, N., Siepmann, J., Siepmann, F., Schamaler, J., Besnard, M., Behar-Cohen, F., Fattal, E. 2006. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release. 30,112:369-81. Grizzi, I., Garreau, H., Li, S., Vert, M., 1995. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials. 16, 305-311. He, Y., Liu, Y., Wang, J., Zhang, X., Lu, W., Ma, Z., Zhu, X., Zhang, Q., 2006. Cyclosporine-loaded microspheres for treatment of uveitis: in vitro characterization and in vivo pharmacokinetic study. Invest Ophthalmol Vis Sci. 47, 3983-3988. Henry, K., Cantrill, H., Fletcher, C., Chinnock, B.J., Balfour, H.H., Jr., 1987. Use of intravitreal ganciclovir (dihydroxy propoxymethyl guanine) for cytomegalovirus retinitis in a patient with AIDS. Am J Ophthalmol. 103, 17-23. Herrero-Vanrell, R., Refojo, M.F., 1988. U.S. Patent 5,718,922. Herrero-Vanrell, R., Ramirez, L., Fernandez-Carballido, A., Refojo, M.F., 2000. Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles, and sterilization process. Pharm Res. 17, 1323-1328. Herrero-Vanrell, R., Refojo, M.F., 2001. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 52, 5-16. Herrero-Vanrell, R., Molina Martinez, I.T., 2007. PLA and PLGA microparticles for intravitreal drug delivery: an overview. J. Drug Del. Sci. Tech. 17, 11-17. Herrero-Vanrell, R., Checa-Casalengua, P., Molina-Martínez, I.T., Tucker, B.A., Young, M., Bravo-Osuna, I., 2009. PLGA microparticles loaded with neuroprotective agents (GDNF and BDNF). A potential treatment for glaucoma. Invest Ophthalmol Vis Sci Annual Meeting. Fort Lauderdale, FL, USA. Abstract 5978. Herrero-Vanrell, R., Barbosa-Alfaro, D., García-Gutierrez, M., Fernández-Bueno, I., Molina-Martínez, I.T. and J. Pastor-Jimeno. 2010a. Tolerance of Juxtascleral Administration of Sterilized PLGA Microparticles Unloaded and Loaded With Dexamethasone. Invest Ophthalmol Vis Sci Annual Meeting. Fort Lauderdale, FL, USA. Abstract 5300. Herrero-Vanrell, R., Cardillo J.A., 2010b. Ocular Pharmacokinetic, Drug Bioavailability and Intraocular Drug Delivery Systems, in: Nguyen Q.D., Rodrigues E.B., Farah M.E., Mieler W.F. (Eds), Saunders Elsevier, China, pp. 60-66. Herrero-Vanrell, R., 2011a. Microparticles as drug delivery systems for the back of the eye, in:Kompella U.B., Edelhauser H.F. (Eds), Drug Product Development for the Back of the Eye. American Association of Pharmaceutical Scientist, Springer New York, pp.231-260. Herrero-Vanrell, R., Cardillo, J.A., Kuppermann, B.D., 2011b. Clinical applications of the sustained-release dexamethasone implant for treatment of macular edema. Clin Ophthalmol 5, 139-146. Herrero-Vanrell, R., Fernandez-Sanchez, L., Puebla-Gonzalez, M., Lax, P., Bravo-Osuna, I., Cuenca, N. 2011c. Encapsulated TUDCA PLGA microspheres for the treatment of retinitis pigmentosa. Invest Ophthalmol Vis Sci Annual Meeting. Fort Lauderdale, FL, USA. Abstract 3251. Herrero-Vanrell, R., Vicario-de-la-Torre, M., Andrés-Guerrero, V., Barbosa-Alfaro, D., Molina-Martinez, I.T., Bravo-Osuna, I., 2013. Nano and microtechnologies for ophthalmic administration, an overview. J. Drug Del. Sci. Tech. 23, 75-102. Jain, S., Malvala, P., Pallaoro. M., Giuliani, M., Petersen, H., O´Hagan, D.T., Singh , M. 2011. A two-stage strategy for sterilization of poly(lactide-co-glycolide) particles by gamma-irradiation does not impair their potency for vaccine delivery. J Pharm Sci. 100, 646-654. Jabs, D.A., Enger, C., Bartlett, J.G., 1989. Cytomegalovirus retinitis and acquired immunodeficiency syndrome. Arch Ophthalmol. 107, 75-80. Jiang, C., Moore, M.J., Zhang, X., Klassen, H., Langer, R., Young, M., 2007. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis. 13, 1783-1792. Kompella, U.B., Bandi, N., Ayalasomayajula, S.P., 2003. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 44, 1192-1201. Kwak, H.W., D'Amico, D.J., 1992. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 110, 259-266. Lee, W.K., Park, J.Y., Yang, E.H., Suh, H., Kim, S.H., Chung, D.S., Choi, K., Yang, C.W., Park, J.S., 2002. Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release. 84, 115-123. Li, S., 1999. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 48, 342-353. Martinez-Sancho, C., Herrero-Vanrell, R., Negro, S., 2003. Poly (D,L-lactide-co-glycolide) microspheres for long-term intravitreal delivery of aciclovir: influence of fatty and non-fatty additives. J Microencapsul. 20, 799-810. Martinez-Sancho, C., Herrero-Vanrell, R., Negro, S., 2004a. Optimisation of aciclovir poly(D,L-lactide-co-glycolide) microspheres for intravitreal administration using a factorial design study. Int J Pharm. 273, 45-56. Martinez-Sancho, C., Herrero-Vanrell, R., Negro, S., 2004b. Study of gamma-irradiation effects on aciclovir poly(D,L-lactic-co-glycolic) acid microspheres for intravitreal administration. J Control Release. 99, 41-52. Martinez-Sancho, C., Herrero-Vanrell, R., Negro, S., 2006. Vitamin A palmitate and aciclovir biodegradable microspheres for intraocular sustained release. Int J Pharm. 326, 100-106. Miller, R.A., Brady, J.M., Cutright, D.E., 1977. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res. 11, 711-719. Mohanan, D., Gander, B., Kundig, T.M., Johansen , P., 2012. Encapsulation of antigen in poly(D,L-lactide.co-glycolide) microspheres proects from harmful effects of gamma-irradiation as assesed in mice. Eur J Pharm Biopharm. 80, 274-281. Montanari, L., Costantini, M., Signoretti, E.C., Valvo, L., Santucci, M., Bartolomei, M., Fattibene, P., Onori, S., Faucitano, A., Conti, A., Genta, I., 1998. Gamma irradiation effects on poly(DL,-lactide-co-glycolide) microspheres. J.Control Release. 56, 219-229. Moritera, T., Ogura, Y., Honda, Y., Wada, R., Hyon, S.H., Ikada, Y., 1991. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci. 32, 1785-1790. Moritera, T., Ogura, Y., Yoshimura, N., Honda, Y., Wada, R., Hyon, S.H., Ikada, Y., 1992. Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 33:3125-30. Moritera, T., Ogura, Y., Yoshimura, N., Kuriyama, S., Honda, Y., Tabata, Y., Ikada, Y., 1994. Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres. Curr Eye Res. 13, 171-176. Nijsen, J.F., van Het Schip, A.D., van Steenbergen, M.J., Zielhuis, S.W., Kroon-Batenburg, L.M., van de Weert, M., van Rijk, P.P., Hennink, W.E., 2002. Influence of neutron irradiation on holmium acetylacetonate loaded poly(L-lactic acid) microspheres. Biomaterials. 23, 1831-1839. Paganelli, F., Cardillo, J.A., Dare, A.R., Melo, L.A., Jr., Lucena, D.R., Silva, A.A., Jr., Oliveira, A.G., Pizzolitto, A.C., Lavinsky, D., Skaf, M., Souza-Filho, A.A., Hofling-Lima, A.L., Nguyen, Q.D., Kuppermann, B.D., Herrero-Vanrell, R., Belfort, R., Jr., 2010. Controlled transscleral drug delivery formulations to the eye: establishing new concepts and paradigms in ocular anti-inflammatory therapeutics and antibacterial prophylaxis. Expert Opin Drug Deliv. 7, 955-965. Paganelli, F., Cardillo, J.A., Melo, L.A., Jr., Lucena, D.R., Silva, A.A., Jr., Oliveira, A.G., Hofling-Lima, A.L., Nguyen, Q.D., Kuppermann, B.D., Belfort, R., Jr., 2009. A single intraoperative sub-tenon's capsule injection of triamcinolone and ciprofloxacin in a controlled-release system for cataract surgery. Invest Ophthalmol Vis Sci. 50, 3041-3047. Patel, S.R., Berezovsky, D.E., McCarey, B.E., Zarnitsyn, V., Edelhauser, H.F., Prausnitz, M.R., 2012. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 53, 4433-4441. Patel, S.R., Lin, A.S., Edelhauser, H.F., Prausnitz, M.R., 2011. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 28, 166-176. Ranta, V.P., Urtti, A., 2006. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 58, 1164-1181. Rincon, A.C., Molina-Martinez, I.T., de Las Heras, B., Alonso, M., Bailez, C., Rodriguez-Cabello, J.C., Herrero-Vanrell, R., 2006. Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies. J Biomed Mater Res A. 78, 343-351. Rodriguez, A., Calonge, M., Pedroza-Seres, M., Akova, Y.A., Messmer, E.M., D'Amico, D.J., Foster, C.S., 1996. Referral patterns of uveitis in a tertiary eye care center. Arch Ophthalmol. 114, 593-599. Rojas, B., de Hoz, R., Ramírez A., Salazar, J.J., Gallego, B., Triviño, A., Andrés-Guerrero, V., Herrero-Vanrell, R., Mihov, G., Dias, A., Zong, M., Ramírez, J.M., 2013. Handling of PEA microparticles for in vivo intraocular injections. XXV Symposium of the European Society for Biomaterials, Madrid, Spain. OP142. Saishin, Y., Silva, R.L., Callahan, K., Schoch, C., Ahlheim, M., Lai, H., Kane, F., Brazzell, R.K., Bodmer, D., Campochiaro, P.A., 2003. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci. 44, 4989-4993. Sintzel, M.B., Schwach-Abdellaoui, K., Mäder, K., Stösser, R., Heller, J., Tabatabay, C., Gurny, R., 1998. Influence of irradiation sterilization on a semi-solid poly(ortho ester). Int J Pharm. 175, 165-176. Srinivasan, C., Katare, Y.K., Muthukumaran, T., Panda, A.K., 2005. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J Microencapsul. 22, 127-138. Szurman P., Kaczmarek R., Spitzer M.S., Jaissle G.B., Decker P., Grisanti S., Henke-Fahle S., Aisenbrey S., Bartz-Shmidt K.U. Differential toxic effect of dissolved triamcinolone and its crystalline deposits on cultured human retinal pigment epithelium (ARPE19) cells. Exp Eye Res. 83, 584-592. Urata, T., Arimori, K., Nakano, H., 1999. Modification of release rates of cyclosporin A from polyl(L-lactic acid) microspheres by fatty acid esters and in-vivo evaluation of the microspheres. J Control Release. 58, 133-141. van Wijngaarden, P., Qureshi, S.H., 2008. Inhibitors of vascular endothelial growth factor (VEGF) in the management of neovascular age-related macular degeneration: a review of current practice. Clin Exp Optom. 91,427-37. Veloso, A.A., Jr., Zhu, Q., Herrero-Vanrell, R., Refojo, M.F., 1997. Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci. 38, 665-675. Visscher, G.E., Robison, R.L., Maulding, H.V., Fong, J.W., Pearson, J.E., Argentieri, G.J., 1985. Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res. 19, 349-365. Ward, M.S., Khoobehi, A., Lavik, E.B., Langer, R., Young, M.J., 2007. Neuroprotection of retina ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres. Mol. Vis. 96, 558-568. Yao, J., Tucker, B.A., Zhang, X., Checa-Casalengua, P., Herrero-Vanrell, R., Young, M.J., 2011. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials 32, 1041-1050. Yaman, A., 2001. Alternative methods of terminal sterilization for biologically active macromolecules. Curr. Opin. Drug Discor. Devel. 4, 760-763. Yasukawa, T., Ogura, Y., Tabata, Y., Kimura, H., Wiedemann, P., Honda, Y., 2004. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res. 23, 253-281. Yasukawa, T., Tabata, Y., Kimura, H., Ogura, Y., 2011. Recent advances in intraocular drug delivery systems. Recent Pat Drug Deliv Formul. 5, 1-10. Xiao, J.H., Zhang, M.N., 2010. Neuroprotection of retinal ganglion cells with GDNF-Loaded biodegradable microspheres in experimental glaucoma. Int J Ophthalmol.3,189-191 Zimmer, A., Kreuter, J., 1995. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev. 16, 61-73.
Collections