Publication:
Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration

Research Projects
Organizational Units
Journal Issue
Abstract
Purpose: To determine the potential use of water-soluble anionic and cationic carbosilane dendrimers (Generations 1-3) as mucoadhesive polymers in eyedrop formulations. Methods: Cationic carbosilane dendrimers decorated with ammonium –NH3 + groups were prepared by hydrosylilation of Boc-protected allylamine and followed by deprotection with HCl. Anionic carbosilane dendrimers with terminal carboxylate groups were also employed in this study. In vitro and in vivo tolerance studies were performed in human ocular epithelial cell lines and rabbit eyes respectively. The interaction of dendrimers with transmembrane ocular mucins was evaluated with a surface biosensor. As proof of concept, the hypotensive effect of a carbosilane dendrimer eyedrop formulation containing acetazolamide (ACZ), a poorly water-soluble drug with limited ocular penetration, was tested after instillation in normotensive rabbits. Results: The methodology used to synthesize cationic dendrimers avoids the difficulty of obtaining neutral –NH2 dendrimers that require harsher reaction conditions and also present high aggregation tendency. Tolerance studies demonstrated that both prototypes of water-soluble anionic and cationic carbosilane dendrimers were well tolerated in a range of concentrations between 5 and 10 μM. Permanent interactions between cationic carbosilane dendrimers and ocular mucins were observed using biosensor assays, predominantly for the generation-three (G3) dendrimer. An eyedrop formulation containing G3 cationic carbosilane dendrimers (5 μM) and ACZ (0.07%) (289.4 mOsm; 5.6 pH; 41.7 mN/m) induced a rapid (onset time 1 h) and extended (up to 7 h) hypotensive effect, and led to a significant increment in the efficacy determined by AUC0 8h and maximal intraocular pressure reduction. Conclusion: This work takes advantage of the high-affinity interaction between cationic carbosilane dendrimers and ocular transmembrane mucins, as well as the tensioactive behavior observed for these polymers. Our results indicate that low amounts of cationic carbosilane dendrimers are well tolerated and able to improve the hypotensive effect of an acetazolamide solution. Our results suggest that carbosilane dendrimers can be used in a safe range of concentrations to enhance the bioavailability of drugs topically administered in the eye.
Description
Keywords
Citation
(1) Abdelkader H.; Alany R.G.; Controlled and continuous release ocular drug delivery systems: pros and cons. Curr.Drug Del. 2012;9,421-430. (2) Urtti A.. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Del. Rev.. 2006;58,1131-1135. (3) Andres-Guerrero V.; Molina-Martinez I.T.; Peral A.; de las Heras B.; Pintor J.; Herrero-Vanrell R.. The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analogue, 5-MCANAT, in rabbit eyes. Invest. Ophthalmol. Vis. Sci.. 2011;52, 1507-1515. (4) Vandamme T.F.; Brobeck L.. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release.2005;102, 23-38. (5) Yang H.; Tyagi P.; Kadam R.S.; Holden C.A.; Kompella U.B.. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS nano. 2012;6,7595-7606. (6) Bravo-Osuna I., Noiray M.; Briand E.; Woodward A.M.; Argueso P.; Molina Martinez; I.T. Herrero- Vanrell R.; Ponchel G.. Interfacial interaction between transmembrane ocular mucins and adhesive polymers and dendrimers analyzed by surface plasmon resonance. Pharm. Res. 2012;29, 2329-2340. (7) Bermejo J.F.; Ortega P.; Chonco L.; Eritja R.; Samaniego R.; Mullner M.; de Jesús E.; de la Mata F. J.; Flores J.C.; Gómez R.; Muñoz-Fernández A. . Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chem.. 2007;13, 483-495. (8) Ortega P.; Chonco L.; de Jesús E.; de la Mata F. J.; Fernández G.; Flores J. C.; Gómez R.; Serramía M. J.; Muñoz-Fernández M. A.. Novel water-soluble carbosilane dendrimers: Synthesis and biocompatibility. Eur J Inorg Chem. 2006,1388-1396. 9) Rasines B.; Sanchez-Nieves J.; Maiolo M.; Maly M., Chonco L.; Jimenez J.L.,; Muñoz-Fernández M. A.; de la Mata F. J.; Gómez R.. Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Trans. 2012;41, 12733-12748. (10) Sánchez-Nieves J.; Muñoz-Fernández M. Á.; Gómez R.; de la Mata F. J.. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetra. 2010;66: 9203-9213. (11) Andres-Guerrero V.; Alarma-Estrany P.; Molina-Martinez I.T.; Peral A.; Herrero-Vanrell R.; Pintor J.. Ophthalmic formulations of the intraocular hypotensive melatonin agent 5-MCA-NAT. Exp. Eye Res. 2009;88, 504-511. (12) Efron N.. Grading scales for contact lens complications. Ophthalmic. Physiol. Opt. 1998;18, 182- 186. (13) Fan X.; White I.M.; Shopova S.I.; Zhu H.; Suter J.D.; Sun Y.. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta. 2008;620: 8-26. (14) Purslow C.; Wolffsohn J.S.. Ocular surface temperature: a review. Eye & contact lens. 2005;31, 117- 123. (15) Sánchez-Nieves J.; Pulido D.; Lorente R.; Muñoz-Fernández M.A; Albericio F.; Royo M.; Gómez R.; de la Mata F. J.. Amphiphilic Cationic Carbosilane PEG Dendrimers: Synthesis and Applications in Gene Therapy. Eur J Med Chem. 2014;76, 43-52. (16) Kitchens K.M.; Kolhatkar R.B.; Swaan P.W.; Eddington N.D.; Ghandehari H.. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: Influence of size, charge and fluorescent labeling. Pharm. Res. 2006;23, 2818-2826. (17) Hong S.; Leroueil P.R.; Janus E.K.; Peters J.L.; Kober M.M.; Islam M.T.; Orr B. G.; Baker J. R.; Bariszak Holl M. M... Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconj. Chem.. 2006;17, 728-734. (18) Gupta U.; Agashe H.B.; Asthana A.; Jain N.K.. A review of in vitro-in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomed.Nanotechn. Biol. Med.. 2006;2, 66-73. (19) Pietersz G.A.; Tang C.K.; Apostolopoulos V.. Structure and design of polycationic carriers for gene delivery. Mini reviews in medicinal chemistry. 2006;6, 1285-1298. (20) Cheng Y.; Xu Z.; Ma M.; Xu T. . Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 2008;97, 123-143. (21) Kukowska-Latallo J.F., Candido K.A., Cao Z.; Nigavekar S.S.; Majoros I.J.; Thomas T.P.; Balogh L.P.; Khan M.K.; Baker J.R.. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65, 5317-5324. (22) Jevprasesphant R.; Penny J.; Attwood D., McKeown N.B.; D'Emanuele A.. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 2003;20, 1543-1550. (23) Aillon K.L.; Xie Y., El-Gendy N.; Berkland C.J.; Forrest M.L.. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Der. Rev. 2009;61, 457-466. (24) Dufes C.; Uchegbu I.F.; Schatzlein A.G.. Dendrimers in gene delivery. Adv. Drug Del. Rev. 2005;57, 2177-2202. (25) Duncan R.;. Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Del. Rev.. 2005;57, 2215- 2237. (26) Boas U.; Heegaard P.M.. Dendrimers in drug research. Chem. Soc. Rev. 2004;33, 43-63. (27) Fischer D.; Li Y.; Ahlemeyer B.; Krieglstein J.; Kissel T.. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomat.. 2003;24, 1121-1131. (28) Reddy J. A.; Dean D.; Kennedy M.D.; Low P.S.. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J. Pharm. Sci.. 1999;88, 1112-1118. (29) Ludwig A.. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Del. Rev. 2005;57, 1595-1639. (30) Besenicar M.; Macek P.; Lakey J.H.; Anderluh G.. Surface plasmon resonance in protein-membrane interactions. Chem. Phys Lip.. 2006;141, 169-178. (31) Oli M.W.; McArthur W.P.; Brady L.J.; A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. J. Microbiol. Met.. 2006;65, 503-511. (32) Hoa X.D.; Kirk A.G.; Tabrizian M.. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens.Bioelectr.. 2007;23, 151-160. (33) Kaur I.P.; Singh M.; Kanwar M.. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int. J. Pharm. 2000;199, 119-127. (34) Omaima N.;. El-Gazayerly A.H.H. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int. J. Pharm. 1997;158, 121-127. (35) Ammar H.O.; El-Nahhas S.A.; Khalil R.M.. Cyclodextrins in acetazolamide eye drop formulations. Die Pharmazie. 1998;53, 559-562. (36) Palma S.D.; Tartara L.I.; Quinteros D.; Allemandi D.A.; Longhi M.R.; Granero G.E.. An efficient ternary complex of acetazolamide with HP-ss-CD and TEA for topical ocular administration. J. Control. Release 2009;138, 24-31. (37) Aggarwal D.; Garg A.; Kaur I.P.. Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm. Pharmacol.. 2004;56, 1509-1517. (38) Tartara L.I.; Quinteros D.A.; Saino V.; Allemandi D.A.; Palma S.D.. Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostructures as drug delivery system. J. Ocular Pharmacol. Ther. 2012;28, 102-109. ) Mishra V.; Jain N.K. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int. J. Pharm.. 2014;461, 380-390. (40) Garcia-Valldecabres M.; Lopez-Alemany A.; Refojo M.F.. pH stability of ophthalmic solutions. Optometry. 2004;75, 161-8.
Collections