Impacto
Downloads
Downloads per month over past year
López-Mesas Colomina, Fernando (2005) Análisis no regular en variedades riemannaianas y aplicaciones a las ecuaciones de Hamilton-Jacobi. [Thesis]
Preview |
PDF
574kB |
Abstract
El propósito de esta Tesis es triple. Primero, extender algunos resultados de minimización perturbada, como el principio variacional suave de Deville, Godefroy y Zizler, y otros resultados de localización de puntos casi críticos, como los teo-remas de Rolle aproximados al ámbito de las variedades riemannianas. Segundo,introducir una definición de subdiferencial para funciones definidas en variedades riemannianas, y desarrollar la teoría del cálculo subdiferencial en variedades riemannianas, de manera que las aplicaciones más conocidas del cálculo subdiferencial permanezcan en variedades riemannianas. Por ejemplo, vemos que cada funcion convexa en una variedad Riemanniana (o equivalentemente, una funcion convexa a lo largo de geodesicas) es subdiferenciable en casi todo punto (por otra parte, cada función continua es superdiferenciable en un conjunto denso, por tanto las funciones convexas son diferenciables en un subconjunto denso de su dominio). Tercero, utilizar estas teorías para probar la existencia y unicidad de soluciones de viscosidad de ecuaciones de Hamilton-Jacobi tenidas en variedades.
Item Type: | Thesis |
---|---|
Additional Information: | Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Análisis Matemático, leída el 28-10-2004 |
Directors: | Directors Azagra Rueda, Daniel Ferrera Cuesta, Juan |
Uncontrolled Keywords: | Variedades riemannianas Hamilton-Jacobi, Ecuaciones de |
Subjects: | Sciences > Mathematics > Mathematical analysis |
ID Code: | 5486 |
Deposited On: | 10 Mar 2006 |
Last Modified: | 24 Nov 2017 11:43 |
Origin of downloads
Repository Staff Only: item control page