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Abstract

The Ebola virus disease is a lethal human and primate disease that requires a particular attention
from the international health authorities due to important recent outbreaks in some Western African
countries and isolated cases in Europe and North-America. Regarding the emergency of this situation,
various decision tools, such as mathematical models, were developed to assist the authorities to focus
their efforts in important factors to eradicate Ebola. In a previous work (see [20]), we proposed an original
deterministic spatial-temporal model, called Be-CoDiS (Between-Countries Disease Spread), to study the
evolution of human diseases within and between countries by taking into consideration the movement
of people between geographical areas. This model was validated by considering numerical experiments
regarding the 2014-16 West African Ebola Virus Disease epidemic. In this article, we perform a stability
analysis of Be-CoDiS. Our first objective is to study the equilibrium states of simplified versions of this
model, limited to the cases of one or two countries, and determine their basic reproduction ratios. Then,
we perform a sensitivity analysis of those basic reproduction ratios regarding the model parameters.
Finally, we validate the results by considering numerical experiments based on data from the 2014-16
West African Ebola Virus Disease epidemic.

Keywords: Epidemiological modelling, Deterministic models, Stability analysis, Sensitivity analysis,
Ebola Virus Disease, Basic reproduction ratio.
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1 Introduction

Modeling and simulation are important decision tools that can be used to control human and animal diseases
[1, 19, 26, 30]. However, since each disease exhibits its own biological characteristics, the models need to be
adapted to each specific case in order to be able to handle real situations [6].

In a previous work (see [20]), we presented a spatial-temporal epidemiological model, called Be-CoDiS
(Between-Countries Disease Spread), for the study of the spread of human diseases between and within
countries. This model is an adaptation of a previous one, called Be-FAST (Between Farm Animal Spatial
Transmission), which simulates the spread of animal diseases between and within farms [19, 26, 24, 25,
23]. Be-CoDiS is based on the combination of a deterministic Individual-Based model (where countries
are considered as individuals) [10], simulating the between-country interactions (here, migratory flux) and
disease spread, with a deterministic compartmental model [6] (a system of ordinary differential equations),
simulating the within-country disease spread. At the end of a simulation, Be-CoDiS returns outputs referring
to outbreaks characteristics (for instance, the epidemic magnitude, the risk of disease introduction or spread
per country, etc.). The main characteristic of this approach is the consideration of the following effects at the
same time: migratory flux between countries, control measure effects and dynamic model parameters fitted
to each country. Then, as a second part of that work, Be-CoDiS was validated by considering the case of the
2014-16 West African Ebola Virus Disease (EVD) epidemic [14, 7, 15, 39]. EVD is a human and primate
virus disease that causes a high mortality rate (between 50% and 90%) [13, 28]. During the period from
December 2013 to March 2016, several important outbreaks were reported in West Africa (Guinea, Liberia,
Sierra Leone and Nigeria). Furthermore, 16 isolated cases were detected in Mali, Senegal, the USA, the
United Kingdom, Italy and Spain. The outbreak was considered over on March 29th 2016. It is estimated
that around 28616 people were infected during those outbreaks and 11310 deaths were reported [38]. Starting
with data from December 2013, Be-CoDiS predicted (see [20]) a total of 28475 infected people, 11797 deaths
and that the epidemic would end on April 19th, 2016.

Once the model has been developed and validated, it would be good to study its mathematical properties,
which can be important to extract conclusions that can be used in further analysis and/or developements of
the model.

In this paper, we perform a stability analysis of two simplified versions of Be-CoDiS. To this aim, we first
analyze the equilibrium states of the model by considering only one country. More precisely, we estimate an
analytical expression of the disease basic reproduction ratio [3, 11, 12], denoted by R0, according to the model
parameters. The basic reproduction ratio associated to a disease free equilibrium, is used in epidemiology
to determine the behavior of an epidemic. It is defined as the average number of new infections caused by
one infected individual in a population in the conditions of a disease free equilibrium, over the course of
its infectious period [1, 6]. We note that the mathematical definition of R0 used in this paper is specific to
deterministic finite dimensional systems such as those considered here [31]. It is generally expected that if
R0 > 1 then the epidemic becomes endemic, whereas if R0 < 1 then the epidemic tends to a disease free
equilibrium [1, 3]. What is expected for R0 = 1 is not always clear, but here we also show convergence to a
disease free equilibrium in this case.

Then, we extend this study to the case of two countries, when one country sends infected people to other
country. Finally, we validate and illustrate the theoretical results obtained here, with numerical experiments
based on data from the 2014-16 West African Ebola virus epidemic and perform a sensitivity analysis of the
estimated basic reproduction ratio, with respect to the model parameters.

This work is organized as follows. In Section 2, we recall the formulation of the Be-CoDiS model presented
in [20]. In Section 3, we study the equilibrium states of simplified versions of this model for one and two
countries. In Section 4, considering data from the 2014-16 West African Ebola virus epidemic, we validate and
illustrate the theoretical results with numerical experiments and perform a sensitivity analysis of the basic
reproduction ratio with respect to the model parameters. Finally, in Section 5, we explain our conclusions.
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2 Be-CoDiS model formulation

We consider a disease with the following states for people (see [20, 21, 27, 28, 39]):

• Susceptible (denoted by S): The person is not infected by the disease pathogen.

• Infected (denoted by E): The person is infected by the disease pathogen but cannot infect other people
and has no visible clinical signs (e.g., fever, hemorrhages, etc.). After an incubation period, the person
passes to the Infectious state.

• Infectious (denoted by I): The person can infect other people and start developing clinical signs. The
mean duration of a person in this state is called infectious period. After this period, infectious people
are taken in charge by sanitary authorities and we classify them as Hospitalized.

• Hospitalized (denoted by H): The person is hospitalized and can still infect other people. At the end
of this state, the person can pass either to the Recovered state or to the Dead state. We point out
that state H does not include hospitalized people which cannot infect other people any more. This
last category of people is included in the Recovered state explained below.

• Dead (denoted by D): The person has not survived the disease. The cadavers of infected people can
infect other people until they are buried. After a fixed average time, the body is buried.

• Buried (denoted by B): The person is dead because of the disease. Its cadaver is buried and can no
longer infect other people.

• Recovered (denoted by R): The person has survived the disease, is no longer infectious and develop a
natural immunity to the disease pathogen.

After an infected person is hospitalized, the authorities may apply various control measures in order to
control the disease spread (see [14, 17]):

• Isolation: Infected people are isolated from contact with other people. Only sanitary professionals
are in contact with them. However, depending on the considered disease, contamination of those
professionals may also occur (see [14]). Isolated people receive an adequate medical treatment that
reduces the disease fatality rate.

• Quarantine: Movement of people in the area of origin of an infected person is restricted and controlled
(e.g., quick sanitary check-points at the airports) to avoid that possible infected people spread the
disease.

• Tracing: The objective of tracing is to identify potential infectious contacts which may have infected
a person or spread the disease to other people.

• Increase of sanitary resources: The number of operational beds and sanitary personal available to
detect and treat affected people is increased. When necessary, the funerals of infected cadavers are
controlled by sanitary personal in order to reduce the contacts between the dead bodies and susceptible
people.

Considering those general disease and control measures, the Be-CoDiS model is used to evaluate the
spread of a human disease within and between countries during a fixed time interval.

At the beginning of the simulation, the model parameters are set by the user. At the initial time (t = 0),
only susceptible people live in the countries that are free of the disease, whereas the number of people in
states S, E, I, H, R, D and B of the infected countries are set to their corresponding values. Then, during
the time interval [0, Tmax], with Tmax ∈ IN being the maximum number of simulation days, within-country
and between-country daily spread procedures, are applied. If at the end of a simulation day t, the number
of people in state E, I, H and D is lower than a fixed threshold (smaller than 1), the simulation is stopped.
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Else, the simulation ends when t = Tmax. Furthermore, the control measures are also implemented and they
can be activated or deactivated, when starting the model, in order to quantify their effectiveness to reduce
the magnitude and duration of an epidemic.

The spread of a disease within a particular country is modeled by using a deterministic compartmental
model (see [6]). For the sake of simplicity, we assume that, at each time, the population inside a country
is homogeneously distributed and constant. Thus, the spatial distribution of the epidemic inside a country
can be omitted. We also suppose that new births are susceptible people and the birth rate is, for the sake
of simplicity, equal to the death rate (due to the disease or other causes).

The disease spread between countries is modeled by using a spatial deterministic Individual-Based model
(see [10]). We consider that the flow of people between countries i and j at time t (i.e., people traveling per
day from i to j at time t), is the only way to introduce the disease from country i, infected by the disease,
to country j. To do so, we consider the matrix (τi,j)

NCO

i,j=1, where τi,j ∈ [0, 1] is the rate of transfer (day−1)
of people from country i to country j, which is expressed in % of population in i per day. Furthermore, we
assume that only people in states S and E can travel, as other categories are not in condition to perform
trips due to the clinical signs or to quarantine. Moreover, as a result of control measures in countries i and
j, we assume that those rates can vary in time and are multiplied by a function denoted by mtr,i,j(t).

Under those assumptions, the evolution of Si(t), Ei(t), Ii(t), Hi(t), Ri(t), Di(t) and Bi(t), denoting the
number of susceptible, infected, infectious, hospitalized, recovered, dead and buried people in country i at
time t, respectively, is modeled by the following system of ordinary differential equations [20]

dSi

dt
(t) = −

Si(t)

(
mI,i(t)βI,iIi(t) +mH,i(t)βH,iHi(t)+mD,i(t)βD,iDi(t)

)

NPi(t)

−µm,iSi(t) + µn,i

(
Si(t) + Ei(t) + Ii(t) +Hi(t) +Ri(t)

)

+
∑

i6=j mtr,j,i(t)τj,iSj(t)−
∑

i6=j mtr,i,j(t)τi,jSi(t),

dEi

dt
(t) =

Si(t)

(
mI,i(t)βI,iIi(t) +mH,i(t)βH,iHi(t)+mD,i(t)βD,iDi(t)

)

NPi(t)

−µm,iEi(t) +
∑

i6=j mtr,j,i(t)τj,iXǫfit(Ej(t))

−
∑

i6=j mtr,i,j(t)τi,jXǫfit(Ei(t))− γEXǫfit(Ei(t)),

dIi
dt

(t) = γEXǫfit(Ei(t))− (µm,i + γI,i(t))Ii(t),

dHi

dt
(t) = γI,i(t)Ii(t)−

(
µm,i + (1− ωi(t))γHR,i(t) + ωi(t)γHD(i(t)

)
Hi(t),

dRi

dt
(t) = (1− ωi(t))γHR,i(t)Hi(t)− µm,iRi(t),

dDi

dt
(t) = ωi(t)γHD,i(t)Hi(t)− γDDi(t),

dBi

dt
(t) = γDDi(t),

(1)

where
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• i ∈ {1, . . . , NCO} is the index of each country,

• NCO ∈ N is the number of countries,

• NPi(t) = Si(t) + Ei(t) + Ii(t) +Hi(t) + Ri(t) +Di(t) + Bi(t) is the number of people (alive and also
died or buried because of the disease) in country i at time t,

• µn,i ∈ [0, 1] is the birth rate (day−1) in country i: the number of births per day and per capita,

• µm,i ∈ [0, 1] is the mortality rate (day−1) in country i: the number of deaths per day and per capita
(or, equivalently, the inverse of the mean life expectancy (day) of a person),

• ωi(t) ∈ [0, 1] is the disease fatality percentage in country i at time t: the percentage of people who do
not survive the disease,

• βI,i ∈ R
+ is the disease effective contact rate (day−1) of a person in state I in country i: the mean

number of effective contacts (i.e., contacts sufficient to transmit the disease) of a person in state I per
day before applying control measures,

• βH,i ∈ R
+ is the disease effective contact rate (day−1) of a person in state H in country i,

• βD,i ∈ R
+ is the disease effective contact rate (day−1) of a person in state D in country i,

• γE(i, t), γI,i(t), γHR,i(t), γHD,i(t), γD(i, t) ∈ (0,+∞) denote the transition rate (day−1) from state E,
I, H (surviving), H (not surviving) or D to state I, H, R, D or B, respectively: the number of people
per day and per capita passing from one state to the other (or, equivalently, the inverse of the mean
duration of one of those people in state E, I, H (surviving), H (not surviving) or D, respectively).
We note that γI,i(t), γHR,i(t) and γHD,i(t) are time and country dependent, since, due to the applied
control measures in country i, their value could vary in time,

• mI,i(t), mH,i(t), mD,i(t) ∈ [0, 1] (%) are functions representing the efficiency of the control measures
applied to non-hospitalized infectious people, hospitalized people and infected cadavers respectively, in
country i at time t to eradicate the outbreaks. Focusing on the application of the control measures,
we multiply the disease contact rates (i.e., βI,i, βH,i and βD,i) by decreasing functions simulating the
reduction of the number of effective contacts as the control measures efficiency is improved. Here, we
have considered the functions (see [22]):

mI,i(t) = mH,i(t) = mD,i(t) = exp

(
− κi max(t− λi, 0)

)
, (2)

where κi ∈ [0,+∞) (day−1) simulates the efficiency of the control measures (greater value implies
lower value of disease contact rates) and λi ∈ R ∪ {+∞} (day) denotes the first day of application of
those control measures,

• Xǫfit(x) = x if x ≥ ǫfit, Xǫfit(x) = 2x − ǫfit if (ǫfit/2) ≤ x ≤ ǫfit, and 0 elsewhere, with ǫfit ≥ 0 being
a small tolerance parameter. This function, with ǫfit small enough, is a filter used to avoid artificial
spread of the epidemic due to negligible values of x.

System (1) is completed with initial data Si(0), Ei(0), Ii(0), Hi(0), Ri(0), Di(0) and Bi(0) given in
[0,+∞); for i ∈ {1, .., NCO}.

This full model (1) is summarized in Figure 1.

Remark 1. We note that the Be-CoDiS model proposed here is not only limited to the study of the EVD,
but can also tackle other diseases, such as the Middle East respiratory syndrome coronavirus or the Severe
acute respiratory syndrome coronavirus [8], by adapting the model parameters.
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Figure 1: Diagram summarizing the complete version of the Be-CoDiS model.

3 Analytical behavior of the Be-CoDiS model

Here, we are interested in studying the equilibrium states and in estimating the basic reproduction ratio of
simplified versions of the Be-CoDiS model presented in Section 2. First, we focus on the case of one country
with an emigration flow of susceptible or infected people and an immigration flow of susceptible people.
Then, we extend the study to the case of two countries, with one country sending people to the other one.

3.1 Simplified model for one country

Here, we are interested in studying the behavior of the epidemic inside one single country. For the sake of
simplicity, we assume that the population size in the considered country is constant and equal to N ∈ N (i.e.,
emigration or death flows are compensated by immigration or birth flows entering the susceptible state).
This hypothesis is reasonable as, due to the size of the population in a country (generally larger than a
million of people) and the time scale of the study (generally lower than five years) considered here, the
global variation of the population size during a simulation is negligible [18]. To avoid asymptotic endemic
solutions with the whole population concentrated in state B, the flow from state D to state B is replaced by
a flow from state D to state S and state B is omitted. We note that this change in the model satisfies the
hypothesis mentioned previously that deaths are replaced by immigration or births in the susceptible state
in order to keep constant the size of the population. Furthermore, to simplify notations,we consider that
S, E, I, H, R and D denote the ratio of people in each state in the considered country (rather than the
total number of people). Additionally, we assume that the model coefficients are constant and no control
measures are applied. As no other country is considered, the filter Xǫfit is omitted. A diagram of this model
for one country is shown in Figure 2.
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Figure 2: Diagram of the simplified model with one country considered in Section 3.1.

Under these assumptions, the evolution of the epidemic, is modeled by





dS

dt
(t) = −S(t)

(
βII(t) + βHH(t) + βDD(t)

)
+ τE(t)

+µ

(
E(t) + I(t) +H(t) +R(t)

)
+ θD(t),

dE

dt
(t) = S(t)

(
βII(t) + βHH(t) + βDD(t)

)
− (µ+ δ + τ)E(t),

dI

dt
(t) = δE(t)− (µ+ γ)I(t),

dH

dt
(t) = γI(t)−

(
µ+ λ+ α

)
H(t),

dR

dt
(t) = αH(t)− µR(t),

dD

dt
(t) = λH(t)− θD(t),

(3)

where

• µ ∈ [0, 1] is the mortality rate (day−1),

• βI ∈ R
+ is the disease effective contact rate (day−1.person−1) of people in state I,

• βH ∈ R
+ is the disease effective contact rate (day−1.person−1) of people in state H,

• βD ∈ R
+ is the disease effective contact rate (day−1.person−1) of people in state D,

• δ, γ and θ denote the transition rates (day−1) from state E to I, I to H and D to S, respectively.

• λ ∈ [0, 1] is the disease fatality percentage times the transition rate from state H to state D,

• α is the disease survival percentage (1 minus the desease fatality percentage) times the transition rate
from state H to state R,
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• τ ∈ [0, 1] is the daily rate (%) of the movement of people in states S or E (people in other states are
not supposed to travel due to their health situation) leaving the country.

We point out that, in order to keep constant the population, people leaving the country for unit of time (i.e.,
τ(S + E)) and people being buried for unit of time (i.e., θD) are added to the susceptible state.

The main parameters used in this work and their corresponding range of values used in Section 4 are
summarized in Table 1.

Table 1: Summary of the main notations used in this work. A brief description (Description) and the range
(i.e., minimum and maximum values) of the values (Range of Value) used in Section 4, with i ∈ {1, 2}.

Notation Range of Value Description
βIi [0.0494,0.2671] Disease effective contact rate (day−1person−1)

of people in state I in country i
βHi [0.020,0.0107] Disease effective contact rate (day−1person−1)

of people in state H in country i
βDi [0.0494,0.2671] Disease effective contact rate (day−1person−1)

of people in state D in country i
δi [0.0120,0.0230] Transition rate (day−1) from state E

to state I in country i
γi [0.2000,0.5000] Transition rate (day−1) from state I

to state H in country i
αi [0.148,0.1050] Disease survival percentage times

transition rate (day−1) from state H to state R
λi [0.0328,0.1282] Disease fatality percentage times

the transition rate (day−1) from state H to state D
θi [0.5000,1.0000] Transition rate (day−1) from state D

to state S in country i
µi [0.012,0.023] Natural mortality rate (day−1) in country i
τi [0,2.4]·10−5 Daily rate (% day−1) of the movement of people

leaving country i
Ni [10,20]·106 Number of people in country i
Si(t)/Ei(t)/Ii(t) [0,1] Percentage (%) of people in state S, E, I, H, R, D
Hi(t)/Ri(t)/Di(t) in country i at time t

For convenience, we will write the solutions of (3) as vectors (E(t), I(t), H(t), D(t), S(t), R(t)) ∈ [0, 1]6,
for all t ≥ 0. We also consider Ω = {(E, I,H,D, S,R) ∈ [0, 1]6 : E + I +H +D + S +R = 1}.

Theorem 1. The set Ω is positively invariant for System (3) (i.e., if (E(0), I(0), ..., R(0)) ∈ Ω, then
(E(t), I(t), ..., R(t)) ∈ Ω, for all t > 0).

Proof. First, we note that System (3) is positive (i.e., if (E(0), ..., R(0)) ∈ [0,+∞)6, then (E(t), ..., R(t)) ∈

[0,+∞)6, for all t > 0). Indeed, if (E(t), ..., R(t)) ∈ [0,+∞)6 and S(t) = 0, then
dS(t)

dt
≥ 0, which guarantees

that S cannot become negative. This property is also true for the other disease states, ensuring the positivity
of the considered system.

Additionally, since
dE

dt
+

dI

dt
+

dH

dt
+

dD

dt
+

dS

dt
+

dR

dt
= 0, we have that E(t) + I(t) + H(t) + D(t) +

S(t) +R(t) = E(0) + I(0) +H(0) +D(0) + S(0) +R(0) = 1 for all t ≥ 0.
Thus, we deduce that Ω is positively invariant for System (3).
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For the study of the stability properties of System (3), we will use the basic reproduction ratio R0, which
is the average number of secondary cases produced by one infected individual during its entire infectious
period in an otherwise uninfected population [1, 16].

From a mathematical point of view, the value of R0 associated to the epidemiological compartmental
model (3) can be computed as the spectral radius of the so-called next generation matrix (see [31] for more
details) as explained below.

More precisely, let us consider a general compartmental model for infectious disease transmission, defined
(following the notation used in [29]) by

{
Ẋ = F(X,Y )− V(X,Y )

Ẏ = g(X,Y ),
(4)

where vectors X = (x1, . . . , xn)
T ∈ R

n and Y = (y1, . . . , ym)T ∈ R
m represent the populations in infected

and non-infected states, respectively; vector F = (F1, F2, . . . ,Fn)
T , with Fi being the rate of appearence

of news infections in compartment i; vector V = (V1,V2, . . . ,Vn)
T , with Vi being the rate of transfer of

individuals out of (for positive values) or into (for negative values) compartment by all other means; and
vector g = (g1, . . . , gm)T represents the transition terms for non-infected states.

Following [29, 32], we assume that:

(A1) All functions Fi, Vi and gi are C2([0, 1]n+m;R),

(A2) F(0, Y ) = V(0, Y ) = 0 (if the population is free of disease then it will remain free of disease),

(A3) Fi(X,Y ) ≥ 0 ∀i ∈ {1, . . . , n} if X,Y satisfy xi ≥ 0 and yj ≥ 0 ∀(i, j) ∈ {1, . . . , n} × {1, . . . ,m},

(A4)

{
Given i ∈ {1, . . . , n}, Vi(X,Y ) ≤ 0 if vector X satisfies that xi = 0,
Given j ∈ {1, . . . ,m}, gj(X,Y ) ≥ 0 if vector Y satisfies that yj = 0,

}
(if a compartment is empty,

then there can be no transfer of individuals out of the compartment),

(A5)

n∑

i=1

Vi (X,Y ) ≥ 0 ∀X,Y such that xi ≥ 0 and yj ≥ 0, ∀(i, j) ∈ {1, . . . , n} × {1, . . . ,m} (the total

outflow from all infected compartments is non negative),

(A6) the disease-free system Ẏ = g(0, Y ) has a unique equilibrium Yf ∈ ΩY = {Y ∈ [0, 1]m : Y1 + ...+ Ym =
1}, which is globally asymptotically stable in ΩY .

Therefore, using assumptions (A1)–(A6), Pf = (Xf , Yf), with Xf = (0, · · ·, 0), is the unique admissible
disease free equilibrium for System (4); we refer to this point as the disease-free equilibrium. Furthermore,
there will be a unique basic reproduction ratio R0, the one associated to Pf , which can be computed as
follows:

Let

F = [
∂Fi

∂xj

(Pf)]
n
i,j=1 and V = [

∂Vi

∂xj

(Pf)]
n
i,j=1. (5)

From assumptions (A1)–(A6) we have (see [32, page 174]) that, if V is nonsingular and F and V −1 are non-
negative matrices (i.e., square matrices all of whose elements are nonnegative), then the basic reproduction
ratio associated to Pf is given by R0 = ρ(FV −1), the spectral radius of matrix FV −1 (see [31], page 33),
which is the so called next generation matrix).

Taking into consideration this result, we introduce the following formulation of System (3). Let P =
(X,Y )T , with X = (E, I,H,D)T and Y = (S,R)T . System (3) can be rewritten as System (4), where
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F(X,Y ) = F̃(S)X, V(X,Y ) = ṼX and g(X,Y ) = g̃(S)

(
X
Y

)
, with

F̃(S) =




0 βIS βHS βDS

0 0 0 0

0 0 0 0

0 0 0 0




, Ṽ =




(µ+ δ + τ) 0 0 0

−δ (µ+ γ) 0 0

0 −γ (µ+ λ+ α) 0

0 0 −λ θ




and

g̃(S) =

(
µ+ τ µ− βIS µ− βHS θ − βDS 0 µ
0 0 α 0 0 −µ

)
.

Then, we have the following theorem.

Theorem 2. The basic reproduction ratio of System (3) is given by

R0 =
δ(αθβI + γλβD + γθβH + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ
. (6)

Proof. To compute the basic reproduction ratio of System (3), we apply the Next Generation Matrix method-
ology briefly described above (see [31]).

To do that, we first rewrite (as done above) System (3) as (4) and notice that the assumptions (A1)–(A5)
are satisfied. In order to check (A6), we consider the system Ẏ = g(0, Y ), which is given by





dS

dt
(t) = µR(t),

dR

dt
(t) = −µR(t).

(7)

In ΩY = {(S,R)T ∈ [0, 1]2 : S +R = 1}, the solutions of System (7) satisfy

dS

dt
(t) = µR(t) = µ(1− S(t)).

Thus, (S(t), R(t))T = (1−R(0)e−µt, R(0)e−µt) is the unique solution of (7) in ΩY , once an initial value
R(0) ∈ [0, 1] is given, and Yf = (1, 0)T is its unique equilibrium point in ΩY , which is globally asymptotically
stable. Therefore, all the assumptions (A1)–(A6), detailed above, are satisfied.

Matrices F = [∂Fi

∂xj
(Pf)]

4
i,j=1 and V = [∂Vi

∂xj
(Pf)]

4
i,j=1 are given by

F =




0 βI βH βD

0 0 0 0

0 0 0 0

0 0 0 0




and V = Ṽ =




(µ+ δ + τ) 0 0 0

−δ (µ+ γ) 0 0

0 −γ (µ+ λ+ α) 0

0 0 −λ θ




, (8)
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respectively. Furthermore, V is nonsingular,

V −1 =




(µ+ δ + τ)
−1

0 0 0

δ
(µ+γ)(µ+δ+τ) (µ+ γ)

−1
0 0

γ δ
(µ+λ+α)(µ+γ)(µ+δ+τ)

γ
(µ+λ+α)(µ+γ) (µ+ λ+ α)

−1
0

λ γ δ
(µ+λ+α)(µ+γ)(µ+δ+τ)θ

λ γ
(µ+λ+α)(µ+γ)θ

λ
(µ+λ+α)θ θ−1



,

and

FV −1 =




δ(αθβI+γλβD+γθβH+λθβI+µθβI)
(µ+δ+τ)(µ+γ)(µ+λ+α)θ

βIθ(µ+λ+α)+βHγθ+βDλ γ

(µ+λ+α)(µ+γ)θ
βHθ+βDλ
(µ+λ+α)θ

βD

θ

0 0 0 0

0 0 0 0

0 0 0 0



.

It is clear that the eigenvalues of FV −1 are
δ(αθβI + γλβD + γθβH + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ
(simple) and 0

(whose algebraic multiplicity is 3). Therefore, as claimed previously,

R0 = ρ(FV −1) =
δ(αθβI + γλβD + γθβH + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ
,

which is the value given in (6).

Using the basic reproduction ratio R0 given in (6), we have the following stability results.

Theorem 3. With the notations used in (4), if (A1)–(A6) are satisfied, we have the following results:

1. The (unique) disease free equilibrium Pf= (0, 0, 0, 0, 1, 0) of System (3) is globally asymptotically stable
in Ω if R0 ≤ 1 and unstable if R0 > 1.

2. If R0 > 1, System (3) has, at least, one endemic disease equilibrium Pe = (Xe, Ye) ∈ Ω, with

Xe = (Ee, Ie, He, De) and Ye = (Se, Re) given by Se =
1

R0
, Ee = θµ (µ+ γ) (µ+ α+ λ)φ, Ie =

δθµ (µ+ α+ λ)φ, He = δθγµφ, Re = δθαγφ, De = δγλµφ and

φ =
1

(δγλ(µ− θ) + (µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ)

(
1−

1

R0

)
.

Before proving Theorem 3 we recall some results that will be used in the proof. We consider a general
autonomous differential equation:

ẋ(t) = f(x(t)), t > 0, (9)

such that x ∈ R
n and f ∈ C0(Rn,Rn). Let us denote, for any function V ∈ C1(U,R) with U ⊂ R

n,

V̇ (x) = ∇V (x)Tf(x). (10)

Theorem 4. Let G ⊂ R
n be a compact and positively invariant set for System (9). Let L ∈ C1(G,Rn)

such that L̇(x) ≤ 0, for all x ∈ G. We consider the following sets: S1 = {x ∈ G : L(x) = minw∈G L(w)};
S2 = {x ∈ G : L̇(x) = 0} and S3 the largest invariant set in S2 for System (9). If S1 = S3, then, starting
from any point in G, System (9) converges asymptotically to S3.

Proof. See, for instance, [2, page 346].
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Proof of Theorem 3. First, we determine the equilibrium states of System (4) by solving
(
F̃(S)− Ṽ

)
X =

0 and g̃(S)P = 0. After some computation (we have used Maple 16), it can be proved that Pf ∈ Ω and Pe,
given in the statement of Theorem 3, are equilibrium points. If R0 > 1, Pe ∈ Ω, else R0 ≤ 1, Pe /∈ Ω (we
also note that, if R0 > 1 and tends to 1, then Pe tends to Pf).

Let us assume that R0 ≤ 1:

In order to build a function L as defined in the statement of Theorem 4, we use a method developed
in [29] to determine a Lyapunov function for the disease free points of System (4) (i.e., points such that
E = I = H = D = 0). With that aim, the first line of System (4) is rewritten as

Ẋ = (F − V )X − f(X,Y ),

where F and V are defined in (5) and f(X,Y ) = (F − V )X − F(X,Y ) + V(X,Y ). Thus, in our case, from
(8), we have that f(X,Y ) = (F − V )X − F̃(S)X + ṼX = (F − F̃(S))X.

Matrices FV −1 and V −1F have the same eigenvalues (we remind that the products of AB and BA of two
arbitrary matrices A ∈ Mn×m and B ∈ Mm×n have the same set of eigenvalues since, if u is an eigenvector
of AB, then Bu is an eigenvector of BA of the same eigenvalue), which are (as seen previously) R0 (simple)
and 0. Furthermore, it can be easily proved (for instance with symbolic computations done with Maple)
that w = (0, βI , βH , βD) is a left eigenvector of V −1F corresponding to the eigenvalue R0.

Let Lf : R
4 × R

2 → R given by Lf(X,Y ) = wV −1X, which leads, by simple calculations, to

Lf(X,Y ) =

(
βIδ

(µ+ γ) (µ+ δ + τ)
+

βHγ δ

(µ+ δ + τ) (µ+ λ+ α) (µ+ γ)
+

βDλ γ δ

(µ+ λ+ α) (µ+ γ) (µ+ δ + τ) θ

)
E

+

(
βI

(µ+ γ)
+

βHγ

(µ+ γ) (µ+ λ+ α)
+

βDλ γ

(µ+ λ+ α) (µ+ γ) θ

)
I +

(
βH

(µ+ λ+ α)
+

βDλ

(µ+ λ+ α) θ

)
H +

βD

θ
D.

We note that Lf is non negative in Ω and, according to (10),

L̇f(X,Y ) = wV −1 ((F − V )X − f(X,Y )) = (R0 − 1)wX − wV −1f(X,Y ).

Additionally, since R0 ≤ 1 and the coordinates of wV −1 and f(X,Y ) are non negative for all (X,Y ) ∈ Ω
then L̇f(X,Y ) ≤ 0 for all (X,Y ) ∈ Ω.

Let Ωf = {(E, I,H,D, S,R) ∈ Ω : E = I = H = D = 0}. If x ∈ Ωf , then Lf(x) = 0 and if x ∈ Ω\Ωf

Lf(x) > 0.
Moreover, we note that L̇f(X,Y ) = 0 if and only if (R0 − 1)wX = 0 and

wV −1f(X,Y ) =
(
−

βIδ

(µ+ γ) (µ+ δ + τ)
−

βHγ δ

(µ+ δ + τ) (µ+ λ+ α) (µ+ γ)

−
βDλ γ δ

(µ+ λ+ α) (µ+ γ) (µ+ δ + τ) θ

)(
1− S

)(
βII + βHH + βDD

)
= 0

From the first condition, we have that I = H = D = 0 if R0 < 1 (no condition if R0 = 1). From the second
condition, we have that S = 1 (and E = I = H = D = R = 0) or I = H = D = 0.

Following the notations introduced in the statement of Theorem 4, we have that

• S1 = {(X,Y ) ∈ Ω : Lf(X,Y ) = minW∈Ω Lf(W ) = 0} = Ωf ,

• S2 = {(X,Y ) ∈ Ω : L̇f(X,Y ) = 0} = {(X,Y ) ∈ Ω : I = H = D = 0},
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• S3 = Ωf . Indeed, on the one hand, starting from any point in S2\Ωf , we have that E(0) > 0

and I(0) = 0, thus, due to the third line of System (3),
dI

dt
(0) > 0 which implies that the tra-

jectory gets out of S2. On the other hand, the solution of System (3) starting from any point in
Ωf , say, (0, 0, 0, 0, 1 − R(0), R(0)), with R(0) ∈ [0, 1], is given by (E(t), I(t), H(t), D(t), S(t), R(t)) =
(0, 0, 0, 0, 1 − R(t), R(0) exp (−µt)) ∈ Ωf for any t ≥ 0. Thus, Ωf is is positively invariant for System
(3) and the largest invariant set in S2 is S3 = Ωf .

Since all the hypothesis of Theorem 4 are fulfilled, we deduce that System (3), starting from any point
in Ω, converges asymptotically to Ωf .

In particular, this implies that limt→+∞ H(t) = 0. From the fifth line of System (3) we have that

dR

dt
(t) = αH(t)− µR(t),

whose solution is given by R(t) = R(0)e−t + e−t
∫ t

0
H(x)exdx.

Let K(t) =
∫ t

0
H(x)ex. Since H(x)ex ≥ 0 for any x ∈ R, K(t) is a non-decreasing and non-negative

function. Thus, we have two cases:

1. limt→+∞ K(t) ∈ R which implies that limt→+∞ R(t) = 0.

2. limt→+∞ K(t) = +∞. Then, applying the rule of l´Hôpital, we obtain that

lim
t→+∞

R(t) = lim
t→+∞

e−t

∫ t

0

H(x)exdx = lim
t→+∞

−e−tH(t)et = lim
t→+∞

−H(t) = 0.

This implies that limt→+∞ R(t) = 0 and limt→+∞ S(t) = 1.
We conclude that Pf is globally asymptotically stable in Ω for System (3).

Let us assume that R0 > 1:

System (4) satisfies the hypothesis of Theorem 2 of [31] and, thus, the equilibrium point Pf is unstable
when R0 > 1.

3.2 Simplified model for 2 countries

In this section, we study the epidemiological behavior of two countries. One of them (denoted by Country 2)
receiving infected people from the other one country (denoted by Country 1). We suppose no extra control
measures are taken (so that mi,j = 1) and take into account the same assumptions and notations (but
indexed by i = 1, 2 according to the country) as those introduced in Section 3.1. For the sake of simplicity,
we assume that each country has constant (in time) population, N1 and N2, respectively, and movement of
people from Country 1 to Country 2. This is a reasonable assumption since, for the typical duration of a
EVD epidemic, the population of a country does not vary significantly.

Remark 2. The same formulation results for the case of two countries keeping constant populations, with
movements from Country 1 to Country 2 and viceversa, with no movements from the infected state in Country
2 (E2) to Country 1.

As usual (see [20]) only people in the susceptible (S) or infected (E) states are supposed to travel. The
percentage of susceptible and infected people travelling, at time t, from Country 1 to Country 2 per unit
time is τ1S1(t) and τ1E1(t), respectively. To keep constant populations in both countries, this rate of people
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is also reintroduced in the susceptible state of Country 1 and removed (after normalizing with the population
of Country 2) from the susceptible state of the second country. Furthermore, to avoid removing too many
people from the susceptible state in Country 2 in the extreme case (and clearly unrealistic) of having E1(t)

much bigger than S2(t), we set a limit K (big enough) for the ratio, so that when
E1(t)

S2(t)
≥ K, only τ̃1KS2(t)

of τ̃1E1(t) is removed from the susceptible state S2 per unit time and the rest, τ̃1(E1(t)−KS2(t)), is removed
from the infected state E2, per unit time. Here, τ̃1 = τ1

N1

N2
represents the proportion of persons going from

Country 1 to Country 2 per unit of time and relative to the population size N2.
More precisely, τ1E1(t) is leaving the infected state E1 and entering in the susceptible states S1 per unit

time, in Country 1. In Country 2, τ̃1E1(t) is entering in the infected state E2(t) per unit time. Furthermore,
to keep constant the population N2,

• τ̃1χK(E1, S2) is removed from the susceptible state S2 per unit time, where χK : [0, 1]2 → R is the
continuous function defined by

χK(x, y) =

{
x if x ≤ Ky
Ky if x ≥ Ky

}
= min{x,Ky}.

• the following quantity is removed from the infected state E2 per unit time:

{
0 if E1 ≤ KS2

τ̃1(E1 −KS2) if E1 ≥ KS2

}
= τ̃1 max{E1 −KS2, 0}

We observe that the final balance of the percentage of infected people entering the infected state in
Country 2 is

τ̃1 (E1 −max{E1 −KS2, 0}) = τ̃1 min{E1,KS2} = τ̃1χK(E1, S2).

Furthermore, following an idea described in [20] to avoid unrealistic spread of the epidemic due to
unrealistic negligible values of movement of people in the state E from one country to another, we may
consider only the contribution of infected individuals from Country 1 in Country 2 when the number of
infected individuals in Country 1 (given by N1E1) is greater than a given threshold N1ǫ > 0. To do that, we
set ǫ ≥ 0 (small enough) and change the function χK by the continuous function χK,ǫ : [0, 1]

2 → R defined
by

χK,ǫ(x, y) =





x, if x ≤ Ky and x ≥ ǫ,
2x2

ǫ
− x, if x ≤ Ky and ǫ ≥ x ≥

ǫ

2
,

Ky, if x ≥ Ky and x ≥ ǫ
2Ky

ǫ
x−Ky, if x ≥ Ky and ǫ ≥ x ≥

ǫ

2
,

0, if x ≤
ǫ

2
.

(11)

This function is a filter used to avoid artificial spread of the epidemic due to negligible values of E1(t) and to
keep nonnegativity of the function S2(t) and constant population of the second country. We point out that,
when ǫ = 0 χK,0(E1(t), S2(t)) = χK(E1(t), S2(t)). A particular graphical representation of this function is
depicted in Figure 3. A representation of the distribution of the analytical formulation of χK,ǫ in the plane
OXY is presented in Figure 4.

Thus, taking into account those hypothesis, we now consider the following systems
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Figure 3: Representation of the function χ1.5,0.6(x, y).

P2(x,y)

P1(x,y)

Ky

x

0

0

0 εε/2

y=x/K

y

x

1

1

Figure 4: Representation of the distribution of the analytical formulation of χK,ǫ in the plane OXY . Here,

P1(x, y) =
2Ky

ǫ
x−Ky and P2(x, y) =

2x2

ǫ
− x.
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dS1

dt
(t) = −S1(t)

(
βI,1I1(t) + βH,1H1(t) + βD,1D1(t)

)
+

τ1E1(t) + µ1

(
E1(t) + I1(t) +H1(t) +R1(t)

)
+ θ1D1(t),

dE1

dt
(t) = S1(t)

(
βI,1I1(t) + βH,1H1(t) + βD,1D1(t)

)
− (µ1 + δ1+τ1)E1(t),

dI1
dt

(t) = δ1E1(t)− (µ1 + γ1)I1(t),

dH1

dt
(t) = γ1I1(t)−

(
µ1 + λ1 + α1

)
H1(t),

dR1

dt
(t) = α1H1(t)− µ1R1(t),

dD1

dt
(t) = λ1H1(t)− θ1D1(t),

(12)





dS2

dt
(t) = −S2(t)

(
βI,2I2(t) + βH,2H2(t) + βD,2D2(t)

)
− τ̃1XK,ǫ(E1(t), S2(t))+

τ2E2(t) + µ2

(
E2(t) + I2(t) +H2(t) +R2(t)

)
+ θ2D2(t),

dE2

dt
(t) = S2(t)

(
βI,2I2(t) + βH,2H2(t) + βD,2D2(t)

)
− (µ2 + δ2 + τ2)E2(t)+

τ̃1XK,ǫ(E1(t), S2(t)),

dI2
dt

(t) = δ2E2(t)− (µ2 + γ2)I2(t),

dH2

dt
(t) = γ2I2(t)−

(
µ2 + λ2 + α2

)
H2(t),

dR2

dt
(t) = α2H2(t)− µ2R2(t),

dD2

dt
(t) = λ2H2(t)− θ2D2(t),

(13)

where all the constants involved are positive and denoting similar things as those of Systems (1) and (3).
A diagram summarizing this model is presented in Figure 5.
Let Ω2 = Ω×Ω = {(E1, I1, H1, D1, S1, R1, E2, I2, H2, D2, S2, R2) ∈ [0, 1]12 : E1+I1+H1+D1+S1+R1 =

1 and E2 + I2 +H2 +D2 + S2 +R2 = 1}.

Theorem 5. The set Ω2 is positively invariant for System (12)-(13).
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Figure 5: Diagram of the simplified model with two countries considered in Section 3.2.

Proof. Let (E1(0), I1(0), ..., R2(0)) ∈ Ω2. Since (E1(0), .., R1(0)) ∈ Ω and system (12) has the same structure
as system (3), due to Theorem 1, the solution (E1(t), I1(t), H1(t), D1(t), S1(t), R1(t)), which is governed by
System (12), remains in Ω for all t ∈ R.

Moreover, (E2(0), .., R2(0)) ∈ Ω implies that (E2(t), ..., R2(t)) ∈ Ω for all t ≥ 0. Indeed, if S2(t) = 0, then
dS2

dt (t) ≥ 0, which guarantees that S2 cannot become negative. Same reasoning applies for E2, I2, H2, D2

and R2.

Additionally, since
dE2

dt
(t) +

dI2
dt

(t) +
dH2

dt
(t) +

dD2

dt
(t) +

dS2

dt
(t) +

dR2

dt
(t) = 0, we have that E2(t) +

I2(t) + H2(t) + D2(t) + S2(t) + R2(t) = E2(0) + I2(0) + H2(0) + D2(0) + S2(0) + R2(0) = 1 for all t ≥ 0.
Thus, (E2(t), I2(t), H2(t), D2(t), S2(t), R2(t)) remains in Ω for all t ∈ R.

Thus, if (E1(0), I1(0), ..., R2(0)) ∈ Ω2, then for all t ∈ R (E1(t), I1(t), ..., R2(t)) ∈ Ω2.

Following Theorem 2, we consider

R0,i =
δi(αiθiβI,i + γiλiβD,i + γiθiβH,i + λiθiβI,i + µiθiβI,i)

(µi + δi + τi)(µi + γi)(µi + λi + αi)θi
, with i = 1, 2, (14)

which is helpful to study the stability of System (12)-(13):

Theorem 6. System (12)-(13) admits a disease free equilibrium Pf = (Pf,1, Pf,2), with Pf,1 = Pf,2 =
(0, 0, 0, 0, 1, 0). Furthermore, the following results hold:

1. If R0,1 ≤ 1 and R0,2 ≤ 1, Pf is globally asymptotically stable.

2. If R0,1 ≤ 1 and R0,2 > 1, then the solution (E1(t), I1(t), H1(t), D1(t), S1(t), R1(t)) of sub-system (12)
with any initial data (E1(0), ..., R(0)) ∈ Ω, tends to the disease free state Pf,1 = (0, 0, 0, 0, 1, 0) as
t → ∞, and there exists an endemic equilibrium Pe,2 = (Ee,2, Ie,2, He,2, De,2, Se,2, Re,2) ∈ Ω for the
sub-system (13).

3. If R0,1 > 1, Pf,1 is an unstable disease free equilibrium and there exists an endemic equilibrium Pe,1 =
(Ee,1, Ie,1, He,1, De,1, Se,1, Re,1) for the sub-system (12). Additionally, if (E1, ....R1, E2, ..., R2) is a
solution of (12)-(13) with (E1(0), ... , R1(0), E2(0), ..., R2(0)) ∈ Ω2 and KS2(t) > E1(t) > ǫ for all
t > 0 (which is a reasonable assumption in real cases), then E2(t) does not converge to 0 as t → ∞.
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Here, for i = 1, 2, Se,i =
1

R0,i
, Ee,i = θiµi (µi + γi) (µi + αi + λi)φi, Ie,i = δiθiµi (µi + αi + λi)φi, He,i =

δiθiγiµiφi, Re,i = δiθiαiγiφi and De,i = δiγiλiµiφi, with

φi =
1

(δiγiλi(µi − θi) + (µi + δi + τi)(µi + γi)(µi + λi + αi)θi)

(
1−

1

R0,i

)
.

Proof. It is obvious that Pf is always a disease free equilibrium. Let us prove the other points of the theorem.

1. and 2.- We first assume that R0,1 ≤ 1:

Since sub-system (12) is independent of sub-system (13) and similar to System (3), as proven in Theorem
3, (E1(t), I1(t), H1(t), D1(t), S1(t), R1(t)) converges to the disease free equilibrium Pf,1.

This implies that there exists a time tǫ > 0, such that E1(t) <
ǫ

2
, for all t > tǫ. Thus, for all t > tǫ,

XK,ǫ(E1(t), S2(t)) = 0 and the first and second equations of sub-system (13) are given by





dS2

dt
(t) = −S2(t)

(
βI,2I2(t) + βH,2H2(t) + βD,2D2(t)

)

+τ2E2(t) + µ2

(
E2(t) + I2(t) +H2(t) +R2(t)

)
+ θ2D2(t),

dE2

dt
(t) = S2(t)

(
βI,2I2(t) + βH,2H2(t) + βD,2D2(t)

)
− (µ2 + δ2 + τ2)E2(t).

Therefore, sub-system (13) is equivalent to System (3) for t > tǫ and, as proven in Theorem 3:

• If R0,2 ≤ 1 , (E2(t), I2(t), H2(t), D2(t), S2(t), R2(t)) converges to the disease free equilibrium Pf,2 as
t → ∞.

• If R0,2 > 1, the point Pe,2 given in the statement of Theorem 6 is an endemic equilibrium for sub-system
(13).

3.- Assuming R0,1 > 1:

From Theorem 3, we deduce that Pf,1 is an unstable disease free equilibrium, the point Pe,1 given in the
statement of Theorem 6 is an endemic equilibrium point of sub-system (12) and Ee,1 > 0.

Let us assume that, for all t > 0, KS2(t) > E1(t) > ǫ.
By reductio ad absurdum, if limt→+∞ E2(t) = 0, there exists t1 > 0 such that for all t > t1, E2(t) <

τ̃1ǫ

2(µ2 + δ2 + τ2)
. Additionally, due to the second equation of sub-system (13),

dE2(t)

dt
≥ −(µ2 + δ2 + τ2)E2(t) + τ̃1XK,ǫ(E1(t), S2(t)) > −

τ̃1ǫ

2
+ τ̃1E1(t) >

τ̃1ǫ

2
, for all t > t1.

This implies that limt→+∞ E2(t) = +∞, which is not possible because, as said previously (see Theorem 5),
0 ≤ E2(t) ≤ 1 for all t ≥ 0. Thus, E2(t) does not converge to 0 as t → ∞.

Remark 3. From Theorem 6, we can define a basic reproduction ratio for the disease described by System
(12)-(13) by considering R0 = max(R0,1, R0,2). Indeed, if R0 ≤ 1, System (12)-(13) converges globally and
asymptotically to the disease free equilibrium (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0), else, under reasonable hypothesis,
it does not converges to this disease free state.
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Table 2: Minimum and maximum values of the parameters of System (3) for the 2014-2016 West African
EVD case.

Parameters Unit Mininmum Maximum
µ (day−1) 0.0120 0.0230
τ (day−1) 0 2.4×10−5

βI (day−1) 0.0494 0.2671
βH (day−1) 0.0020 0.0107
βD (day−1) 0.0494 0.2671
δ (day−1) 0.0476 0.5000
θ (day−1) 0.5000 1.0000
γ (day−1) 0.2000 0.5000
λ (day−1) 0.0328 0.1272
α (day−1) 0.0148 0.1050

4 Application to the 2014-2016 West African EVD epidemics

In this section, in order to validate and illustrate the interest of the theoretical results obtained previously,
we present some numerical experiments based on data from the 2014-2016 West African EVD epidemics.
To do so, in Section 4.1, we perform a sensitivity analysis of the basic reproduction ratio studied in Section
3.1, regarding the model parameters. This sensitivity analysis will be used later, in Section 5, to propose
strategies to allocate the resources for fighting EVD. Next, in section 4.2, to exhibit the stability results
highlighted in Theorem 6, we present the evolution of the epidemic between two countries by considering
several sets of parameters.

4.1 Sensitivity analysis of the basic reproduction ratio

In Table 2, we show the maximum and minimum values of the parameters of System (3) reported in the
literature for the 2014-2016 West African EVD case [7, 14, 15, 20, 27].

Considering those values, we study the impact of variations in each model parameter on the value of the
basic reproduction ratio given in Theorem 3 and rewritten as a function

R0(P ) =
δ(αθβI + γλβD + γθβH + λθβI + µθβI)

(µ+ δ + τ)(µ+ γ)(µ+ λ+ α)θ
, (15)

with P = (βI , βD, βH , δ, α, θ, γ, λ, µ, τ) = (P1, P2, ..., P10) ∈ (0,+∞)9 × [0,+∞).
We note that, due to the complexity of the nonlinear function R0 : (0,+∞)9 × [0,+∞) → R, performing

an analytical study of its gradient is quite complicated. Thus, here, we decided to use a numerical approach.

To do so, we apply the following algorithm which is described for a general function with Nparam param-
eters:

Step 1 Let Nparam ∈ N be the number of parameters (here, Nparam = 10 for the function R0 given in (15)).
We set Nscen and Npoints, the number of random scenarios and the number of points inside the interval
of values of parameters, respectively.

Step 2 For s = 1, 2, ..., Nscen,

Step 2.1 We randomly generate a set of parameters, denoted by Ps = (Ps,1, ..., Ps,Nparam
), considering a

uniform distribution in the interval of values reported in Table 2. We denote by Ps,p and P s,p

the minimum and maximum value of parameter Ps,p, with p = 1, ..., Nparam, respectively.

Step 2.2 We compute R̄s,0 = R0(Ps).
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Step 2.3 For p = 1, ..., Nparam,

Step 2.3.1 For k = 1, ..., Npoints,

Step 2.3.1.1 We set Ps,p,k = Ps,p × (1− k−1
Npoints−1 ) + P s,p × ( k−1

Npoints−1 ).

Step 2.3.1.2 We set P = Ps and replace its pth component Ps,p by Ps,p,k.

Step 2.3.1.3 We compute R̃s,p,k,0 = R0(P ).

Step 2.3.1.4 We compute the relative percentage error between R̃s,p,k,0 and R̄s,0 as

Err(s, p, k) =
|R̃s,p,k,0 − R̄s,0|

R̄s,0
.

End For

Step 2.3.2 Considering the values R̃s,p,k,0, we compute C̃r(s, p), the Pearson correlation coefficient (see,

e.g., [5]) between vectors
(
R̃s,p,1,0, · · · , R̃s,p,Npoints,0

)
and

(
Ps,p,1, · · · , Ps,p,Npoints

)
.

End For

End For

Step 3 For p = 1, ..., Nparam and k = 1, ..., Npoints, we compute the mean relative error given by

Err(p, k) =
1

Nscen

Nscen∑

s=1

Err(s, p, k).

End For
For p = 1, ..., Nparam, we compute the mean and maximum values of

{Err(p, k)}
Npoints

k=1 .

End For

Step 4 For p = 1, ..., Nparam, compute the mean correlation coefficient of the value of R0 with respect to the
p-th parameter, given by

Cr(p) =
1

Nscen

Nscen∑

s=1

C̃r(s, p).

End For

Here, we have considered Nscen = 106 and Npoints = 100. Thus, the number of R0 evaluations performed
with this algorithm is 109 and the computation time on a 3.6 Ghz I7 Intel Computer with 32 Gb of RAM is
573 seconds.

The results obtained with the algorithm detailed above, when studying the sensitivity analysis of R0

with respect to each parameters of System (3) and considering data from the 2014-2016 West African EVD
epidemic, are reported in Table 3. We observe that parameter τ has a negligible influence on R0. Additionally,
βI and γ are the most sensitive parameters with a mean error greater than 20% and reaching errors up to
374% for the worst scenarios. All other parameters have a moderated impact on the basic reproduction
ratio with a mean error lower than 8%, but may produce differences up to 162% for extreme variation
cases. Regarding the Pearson correlation coefficient, we note that increasing the values of λ and δ should
increases the value of R0. Furthermore, R0 exhibits a linear increasing dependency regarding βI , βH or βD

that is why the corresponding Pearson correlation coefficient is 1; furthermore, in this case, computing the
partial derivatives of R0 with respect to those parameters is trivial. On the other hand, increasing all other
parameters should decreases the value of R0.
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Table 3: Mean and maximum values of the relative error Err obtained with the algorithm presented in
Section 4.1, when studying the sensitivity analysis of R0 with respect to each parameters of System (3) and
considering data from the 2014-2016 West African EVD epidemic. We also report in the last column the
value of Cr, the mean Pearson correlation coefficient of the value of R0 with respect to each parameter.

Parameter Unit Mean Err Maximum Err Cr
µ (day−1) 3.5 42 -0.99
τ (% day−1) 10−3 0.03 -0.99
βI (day−1person−1) 40 387 +1.00
βH (day−1person−1) 4.4 135 +1.00
βD (day−1person−1) 7.7 139 +1.00
δ (day−1) 5.8 41 +0.86
θ (day−1) 3.7 56 -0.98
γ (day−1) 21.3 132 -0.97
λ (day−1) 4.7 162 +0.96
α (day−1) 6.0 121 -0.95

The values of the basic reproduction ratios obtained with the algorithm described above were included in
the interval [0.0957,1.7424], with a mean value of 0.5833. Those results show that, for the considered range
of parameters, there exist scenarios for which the EVD epidemic may remain endemic in the considered
population and, thus, the application of control measure should be applied in order to contain the disease
spread.

4.2 Disease evolution between 2 countries

We now focus on the case of System (12)-(13), with Country 1 potentially sending infected people to Country
2.

To study some representative numerical examples, we consider two set of parameters, denoted by Set 1
and Set 2, detailed in Table 4, corresponding to basic reproduction ratios of 0.3491 and 1.3910, respectively.
Furthermore, we assume that the population sizes are N1 = 2×107 and N2 = 107 in Country 1 and Country
2, respectively. The initial conditions are set to S1(0) = 0.999 (equivalent to 1.998 × 107 people in this
particular case), E1(0) = 0.001 (equivalent to 20000 people in this particular case) , S2(0) = 1 (equivalent to
107 people in this particular case) and all other ratios set to 0. Additionally, ǫ = 1/N1 to consider emigration
flow from Country 1 to Country 2 only in the case that it exists at least one infected individual in Country 1.
The model is discretized by considering the explicit Euler scheme with a step size of 0.1 day. The simulation
is stopped after a maximum number of 3650 days; or if the change in state S from one iteration to other is
lower than 10−9 for both countries; or if the percentage of contaminated people (e.g., people either in the
state E, I, H or D) in each country is lower than the inverse of the population size.

Taking into account those parameters and numerical methods, we perform the following four experiments:

• Country 1 with Set 1 and Country 2 with Set 1 (Exp11): The percentage of contaminated pe-
ople in both countries is presented in Figure 6. In this case, this percentage is decreasing in Country
1. In Country 2, the maximum ratio of contaminated people is 1.3×10−7 (equivalent to 2 people) and
is reached after 8.9 days. The initial outbreak in Country 2 is due to the transportation of infected
people from Country 1 occurring during the first 77.5 days of the simulation. The simulation stops
after 102.7 days due to the low percentage of contaminated people in both countries.

• Country 1 with Set 1 and Country 2 with Set 2 (Exp12): The evolution of the percentages of
contaminated and safe (i.e., people either in the state S or R) people are depicted in Figure 7. We can
see in this figure, that the ratio of contaminated people decreases in Country 1. On the opposite, in
Country 2 the epidemic starts due to the movement of infected people from Country 1 during 77.5 days
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Table 4: Values of the parameters in Set 1 and Set 2 used in during the experiments presented in Section
4.2. The basic reproduction ratio (R0) generated by those values is also reported.

Parameter Unit Set 1 Set 2
µ (day−1) 0.0197 0.0120
τ (%day−1) 2×10−5 2.4×10−5

βI (day−1) 0.1147 0.2671
βH (day−1) 0.0046 0.0107
βD (day−1) 0.1147 0.2671
δ (day−1) 0.3643 0.0476
θ (day−1) 0.8500 0.5000
γ (day−1) 0.4100 0.2000
λ (day−1) 0.0564 0.1272
α (day−1) 0.0693 0.0148
R0 1.3910 0.3491
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Figure 6: Evolution (starting from day 2) of the percentage (in logarithmic scale) of contaminated people in
Countries 1 and 2 simulated for the experiment Exp11 presented in Section 4.2.
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Figure 7: Evolution of the percentages of contaminated and safe people in Countries 1 (in logarithmic scale)
and 2 simulated for the experiment Exp12 presented in Section 4.2.

and, then, reaches an endemic equilibrium with 23% of contaminated people. The simulation stops
after 1238 days due to the stabilization of the numerical solutions. We note that, at the end of the
simulation, the final value of (E2, ..., R2) is numerically close to the value of Pe,2 reported in Theorem
6.

• Country 1 with Set 2 and Country 2 with Set 1 (Exp21): The evolution of the percentages of
contaminated and safe people are shown in Figure 8. We can see that the epidemic reaches an endemic
equilibrium of 23% of contaminated people in Country 1. For Country 2, due to the continuous
movement of infected people coming from Country 1, the epidemic starts and remains endemic with an
equilibrium of 10−4% of contaminated people in the population. The simulation stops after 1149 days
due to the stabilization of the numerical solutions. We note that, as remarked in Theorem 6, despite
the fact that the basic reproduction ratio of country 2 is lower than 1, the emigration of people from
Country 1 does not allow Country 2 to approach a disease free state. Again, we note that, the final
value of (E1, ..., R1) is numerically close to the value of Pe,1 reported in Theorem 6.

• Country 1 with Set 2 and Country 2 with Set 2 (Exp22): In Figure 9, we report the percent-
ages of contaminated people in both countries. Endemic states of 23.28% and 23.36% of contaminated
people are reached in Countries 1 and 2, respectively. The epidemic in Country 2 suffers a delay,
regarding Country 1, due to the time required to move infected people from Country 1 to Country 2.
The simulation stop after 1436 days due to the stabilization of the numerical solutions. We observe
that the final value of (E1, ..., R1) and (E2, ..., R2) are numerically close to the value of Pe,1 and Pe,2

reported in Theorem 6.

We note that all values reported previously are obtained numerically and correspond to approximations
of the results detailed in Theorem 6. Furthermore, we point out the fact that, when R0,i > 1 in country
i ∈ {1, 2}, we have obtained in this country the numerical convergence of the solution to the endemic
equilibrium point reported in Theorem 6. This seems to indicate that if R0,i > 1, although this result has
not been proven theoretically, this endemic equilibrium point is asymptotically stable.

5 Discussion and Conclusions

In this paper, we have performed an analysis of the equilibrium states of simplified versions of the Be-CoDiS
model proposed in [20]. This model aims to study the spread of human diseases between countries.
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Figure 8: Evolution of the percentages of contaminated and safe people in Countries 1 and 2 simulated for
the experiment Exp21 presented in Section 4.2. In country 2, the evolution is shown from day 2.

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

Time (days)

R
a
ti
o

Exp22

 

 

Country 1

Country 2

Figure 9: Evolution of the percentages of contaminated people in Countries 1 and 2 simulated for the
experiment Exp22 presented in Section 4.2.
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In Section 3.1, we have estimated a basic reproduction ratio (denoted by R0) of a version of the model for
one country. In particular, we have obtained in Theorem 3 an analytical expression of R0 according to the
model parameters. Additionally we have proven that if R0 ≤ 1, then the disease free equilibrium is globally
and asymptotically stable which is a desirable biological situation because the epidemic will disappear. When
R0 > 1, we show that the disease free equilibrium is unstable. This leads to the persistence of the epidemic
in the considered population.

Then, starting from this R0 expression and data from the 2014-16 West African Ebola epidemic, we
have performed a sensitivity analysis of the basic reproduction ratio regarding the model parameters. We
point out that due to biological reasons, one generally does not have control on parameters µ (the mortality
rate) and δ (transition from E to I). Taking into account this observation, due to the control measures
applied by the authorities in order to eradicate the EVD spread (i.e., Isolation, Quarantine, Tracing and
Increase of sanitary resources, see [33, 38, 14]), other model parameters can be regulated according to the
technical limitations of those control measures. In particular, this sensitivity analysis seems to indicate that
decreasing the time of detection of infectious people (1/γ, the inverse of the transition rate from I to H)
and the contact rate with infectious people (βI) are the most efficient way to reduce the epidemic evolution.
During the 2014-16 EVD epidemic, both variables were controlled, for instance, by monitoring the population
in areas of EVD risk with healthcare workers, by performing information campaigns about the disease and
by isolating suspicious cases [9, 7, 37]. For example, considering the case of Guinea, it was estimated that
βI and γ were reduced by the control measures, from 0.1944 and 0.2000, in December 2013, to 0.0871 and
0.3333, in October 2015, respectively [20]. Additionally, controlling contact with hospitalized people (βH)
and dead body (βD), should have an impact on the EVD magnitude, although lower than reducing βI and
1/γ. In particular, it was observed that, during the first months of this EVD epidemic, around 20% of
the infections were due to contacts with dead bodies [37, 34]. Additionally, the reported number of health
workers infected due to contacts with hospitalized people was around 815 in May 2015, which correspond
to 4% of the total number of EVD cases [36]. For these variables, control measures, such as the increase of
sanitary conditions in hospitals and the supervision of funerals, allowed to reduce those risk factors. It was
estimated that, those contact rates were both reduced by two from the beginning to the end of the epidemic
[20]. The increase of sanitary resources in hospitals also allowed to increase the value of α (transition from
H to R), for instance, in Guinea from 0.0847 to 0.1250 [20]. Regarding θ and λ, both parameters were
controlled by reducing the duration of the funerals and the death rate (e.g., by improving the healthcare
system). In particular, for Guinea, θ passes from 0.5 to 1 and λ from 0.2381 to 0.1707 [20]. We note that the
classification of the importance of the model parameters in EVD control proposed here is consistent with the
response plan proposed by the international community to fight the EDV outbreaks [35]. All those results
seem to validate the interest of using System (3) and its R0 value to identify the most important factors of
an epidemic evolution.

Next, in Section 3.2, we have described the behavior of the epidemic evolution when two countries are
connected by an emigration flow. From Theorem 6, we conclude that when R0,1 ≤ 1 (where R0,1 is computed
with formula (14)) in Country 1, the evolution of the disease in Country 2 only depends on the value of
R0,2. More precisely, if R0,2 ≤ 1, the epidemic disappears in Country 2, whereas if R0,2 > 1 it may become
endemic in Country 2. On the opposite, when R0,1 > 1, under some reasonable assumptions, the epidemic
may remain active in Country 2, even if R0,2 ≤ 1. This behavior was illustrated in Section 4.2 by performing
four particular numerical experiments with several sets of parameters estimated from the 2014-16 EVD
epidemic. The numerical results shown here are consistent with those found theoretically. Additionally,
those numerical results seem to indicate that if R0,i > 1 for Country i ∈ {1, 2}, the epidemic in this country
should converge to the endemic equilibrium point Pe,i defined in Theorem 6 (property which is not proven
theoretically). Those outcomes tend to show the necessity to control the emigration flows from countries
with serious epidemic scenarios. This recommendation was also proposed in the literature for the case of the
2014-16 EVD epidemic [4].
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time and economic evaluation of risks related with livestock diseases: The example of fmd in Peru.
Preventive Veterinary Medicine, 114(1):47–63, 2014.
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