Publication:
Applying Young diagrams to 2-symmetric fuzzy measures with an application to general fuzzy measures

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2020-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we apply Young diagrams, a well-known object appearing in Combinatorics and Group Representation Theory, to study some properties of the polytope of 2-symmetric fuzzy measures with respect to a given partition, a subpolytope of the set of fuzzy measures. The main result in the paper allows to build a simple and fast algorithm for generating points on this polytope in a random fashion. Besides, we also study some other properties of this polytope, as for example its volume. In the last section, we give an application of this result to the problem of identification of general fuzzy measures.
Description
Keywords
Citation
[1] J. Bandlow, An elementary proof of the hook formula, Electron. J. Comb. 15 (2008). Research paper 45. [2] G. Beliakov, R. Mesiar, L. Valášková, Fitting generated aggregation operators to empirical data, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 12 (2) (2004) 219–236. [3] G. Brightwell, P. Winkler, Counting linear extensions, Order 8 (3) (1991) 225–242. [4] G. Choquet, Theory of capacities, Ann. Inst. Fourier (5) (1953) 131–295. [5] E.F. Combarro, I. Díaz, P. Miranda, On random generation of fuzzy measures, Fuzzy Sets Syst. 228 (2013) 64–77. [6] E.F. Combarro, P. Miranda, Identification of fuzzy measures from sample data with genetic algorithms, Comput. Oper. Res. 33 (10) (2006) 3046–3066. [7] E.F. Combarro, P. Miranda, On the polytope of non-additive measures, Fuzzy Sets Syst. 159 (16) (2008) 2145–2162. [8] E.F. Combarro, P. Miranda, Adjacency on the order polytope with applications to the theory of fuzzy measures, Fuzzy Sets Syst. 180 (2010) 384–398. [9] E.F. Combarro, P. Miranda, On the structure of the k-additive fuzzy measures, Fuzzy Sets Syst. 161 (2010) 2314–2327. [10] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002. [11] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986. [12] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989. [13] M. Grabisch, k-order additive discrete fuzzy measures, in: Proceedings of 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Granada (Spain), 1996, pp. 1345–1350. [14] M. Grabisch, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets Syst. (92) (1997) 167–189. [15] M. Grabisch, Ensuring the boundedness of the core of games with restricted cooperation, Ann. Oper. Res. 191 (2011) 137–154. [16] M. Grabisch, Set Functions, Games and Capacities in Decision Making, Theory Decis. Libr., vol. 46, Springer, 2016. [17] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Cambridge University Press, 2009. [18] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals – Theory and Applications, Stud. Fuzziness Soft Comput., vol. 40, Physica-Verlag, Heidelberg (Germany), 2000. [19] M. Grabisch, J.-M. Nicolas, Classification by fuzzy integral-performance and tests, in: Special Issue on Pattern Recognition, Fuzzy Sets Syst. (65) (1994) 255–271. [20] P. Griffiths, J. Harris (Eds.), Principles of Algebraic Geometry, Wiley Classics Library, Wiley, 1994. [21] M. Huber, Fast perfect sampling from linear extensions, Discrete Math. 306 (2006) 420–428. [22] A.D. Kalvin, Y.L. Varol, On the generation of all topological sortings, J. Algorithms (4) (1983) 150–162. [23] A. Karzanov, L. Khachiyan, On the conductance of order Markov chains, Order 8 (1) (1995) 7–15. [24] D.E. Knuth, J. Szwarcfiter, A structured program to generate all topological sorting arrangements, Inf. Process. Lett. (2) (1974) 153–157. [25] G. Koshevoy, Distributive lattices and product of capacities, J. Math. Anal. Appl. 219 (1998) 427–441. [26] J. Leydold, W. Hörmann, A sweep-plane algorithm for generating random tuples in simple polytopes, J. Math. Comput. (67) (1998) 1617–1635. [27] J.-L. Marichal, Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral, Eur. J. Oper. Res. 155 (3) (2004) 771–791. [28] J. Matousek, Lectures on Discrete Geometry, Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2002. [29] P. Miranda, E.F. Combarro, On the polytopes of belief and plausibility functions, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 18 (6) (2010) 679–690. [30] P. Miranda, M. Grabisch, P. Gil, p-symmetric fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (Suppl.) (2002) 105–123. [31] J. Neggers, H.S. Kim, Basic Posets, World Scientific, 1998. [32] I. Pak, J.C. Novelli, A. Stoyanovskii, A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci. (1) (1997) 53–67. [33] G. Pruesse, F. Ruskey, Generating linear extensions fast, SIAM J. Comput. (23) (1994) 373–386. [34] R.Y. Rubinstein, D.P. Kroese, Simulation and the Monte Carlo Method, Wiley-Interscience, 2007. [35] R. Stanley, Two poset polytopes, Discrete Comput. Geom. 1 (1) (1986) 9–23. [36] R. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge (UK), 2012. [37] R. Stanley, Catalan Numbers, Cambridge University Press, Cambridge (UK), 2015. [38] M. Sugeno, Theory of Fuzzy Integrals and Its Applications, PhD thesis, Tokyo Institute of Technology, 1974. [39] Y.L. Varol, D. Rotem, An algorithm to generate all topological sorting arrangements, Comput. J. 24 (1) (1981) 83–84. [40] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Syst. Man Cybern. (18) (1988) 183–190. [41] J. Wang, Z. Wang, K. Xu, G. Klir, Using genetic algorithms to determine nonnegative monotone set functions for information fusion in environments with random perturbation, Int. J. Intell. Syst. 14 (1999) 949–962.
Collections