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A NEW CLASS OF ENTROPIC INFORMATION MEASURES,
FORMAL GROUP THEORY AND
INFORMATION GEOMETRY

MIGUEL A. RODRIGUEZ, ALVARO ROMANIEGA, AND PIERGIULIO TEMPESTA

ABSTRACT. In this work, we study generalized entropies and information ge-
ometry in a group-theoretical framework. We explore the conditions that en-
sure the existence of some natural properties and at the same time of a group-
theoretical structure for a large class of entropies. In addition, a method
for defining new entropies, using previously known ones with some desired
group-theoretical properties is proposed. In the second part of this work, the
information geometrical counterpart of the previous construction is examined
and a general class of divergences are proposed and studied. Finally, a method
of constructing new divergences from known ones is discussed; in particular,
some results concerning the Riemannian structure associated with the class of
divergences under investigation are formulated.
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1. INTRODUCTION

The aim of this paper is to introduce a new, large class of entropic information
measures coming from group theory and, at the same time, to establish a novel
connection between the theory of classical generalized entropies and information
geometry.
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In the last decades, a wealth of new information measures have been proposed in
the literature, due to their prominent role in many different scenarios arising from
physics, social and economical sciences, and in particular classical and quantum
information theory. The famous Rényi and Tsallis entropies are two possible gener-
alizations of the well-known Shannon entropy (the equivalent in information theory
of Boltzmann-Gibbs entropy in thermodynamics). They are one-parametric func-
tions which reproduce the Shannon’s functional in a specific limit. Rényi’s entropy
was introduced in 1961 as the most general classical information measure satis-
fying additivity with respect to the composition of independent events or systems
[I7,[12]. Subsequently, Tsallis entropy was introduced in 1989 as a possible general-
ized entropy for the thermodynamic treatment of long-range systems; it represents
an interesting example of a non-additive measure [25] 24].

More general entropies have also been proposed. For instance, Sharma-Mittal’s
(SM) entropy was introduced already in 1975; it represents a bi-parametric function
that generalizes both Rényi’s and Tsallis’s ones. The SM entropy was recently
studied by Nielsen and Nock, [16] in the context of information theory.

Starting from 1957, Jaynes [10, [T1] established a natural and fundamental cor-
respondence between statistical mechanics and information theory. In his vision,
information theory provides an inference methodology to describe general proper-
ties of arbitrary systems on the basis of incomplete information. In particular, if
the available information of a system is the set of mean values of some random vari-
ables, the lest-biased distribution compatible with those constraints is postulated
to be the one which maximizes the entropy.

In the last years, a new approach to information theory, called information ge-
ometry [II, 2], has emerged. Information geometry provides a new methodology
applicable to various areas including information and physical sciences. Its main
objective is the investigation of the geometrical structures that can be introduced
in the manifold associated with the set of probability distributions of a statistical
model. In this approach, one defines a Riemannian metric in a manifold of proba-
bility distributions, together with dually coupled affine connections. A remarkable
example is the celebrated Fisher metric in statistics, which is the unique invari-
ant metric over the manifold of probability distributions according to Chentsov’s
theorem, see [II, 2] for details. Information geometry provides new tools useful in
various areas of information sciences, such as statistical inference, quantum infor-
mation theory, machine learning, convex optimization, time series analysis, etc. It
is also a key tool for other areas, such as neuro-computing (where a set of neu-
ral networks forms a neuro-manifold, a nonlinear system equipped with the Fisher
metric, [I]). Here we will focus on the concept of divergence (and its associated
geometric structure), representing a pseudo-distance over the probability manifold.

In this work, we study generalized entropies and information geometry in a broad
sense.

In order to classify generalized entropies, we adopt here the group-theoretical
approach, proposed in [2I], based on the notion of group entropy. Essentially, the
approach consists in an axiomatic formulation of the concept of generalized en-
tropy, based on early work by Shannon [19 20] and Khinchin [I3]. More precisely,
we require that an entropic function must satisfy the first three Shannon-Khinchin
(SK) axioms (continuity, maximum entropy principle, null-composability, see be-
low for details). Indeed, these properties are both very natural and fundamental in
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information theory and statistical mechanics. However, the additivity axiom, nec-
essary for characterizing uniquely Boltzmann’s entropy [13], is replaced by a more
general axiom of composability. In other words, we impose that, when composing
two statistically independent systems, the entropy of the compound system be a
function of the entropy of the component systems only: S(AUB) = ®(S(A), S(B)).
This property is crucially required in all the space of probability distributions rep-
resenting the macro-states of the system. Mathematically, the rule governing the
composition process is essentially a formal group law, which defines the group-
theoretical structure associated with the given entropy in the probability space.
When a function satisfies the (SK) axioms jointly with the composability one, we
shall talk about a group entropy.

The many properties of group entropies ensure the possibility of interpreting
them as good information measures in the context of the geometric theory of in-
formation, as we shall see in detail, and in a broader perspective in statistical
mechanics.

Our main result in the theory of generalized entropies is a theorem that allows us
to construct a new, large class of group entropies possessing relevant mathematical
properties. Indeed, we shall propose a mathematical mechanism that permits to
generate a “new” group entropy from an “old” one; both of them share the same
formal group law as the composition law. More generally, this idea can also be
implemented by combining several entropic functions at the same time in a way
that generates new entropies with a prescribed group-theoretical structure.

At the same time, we wish to remark that the connections between information
geometry and generalized entropies are abundant and well known in the litera-
ture. First of all, the “associated divergence” for the Shannon-Boltzmann-Gibbs
entropy, namely the Kullback-Leibler (KL) divergence (also called Shannon rela-
tive entropy), gives rise to a geometric structure of our statistical manifold based
on the Fisher metric. We remind that Shannon’s relative entropy also comes from
another important class of divergences, the Bregman divergence ([5]), associated
with exponential families, widely studied in information geometry. Furthermore, if
the exponential families are extended using generalized logarithms, Tsallis entropy
arises, [3], as the “potential” of a Legendre transformation. Moreover, these po-
tentials allow us to define a dually flat geometry. The same construction can be
repeated starting from a general deformed logarithm proposed in [4], which gives
rise to the notion of y-entropy. It is also worth-mentioning that the a-divergences
in information geometry are directly related to the a-entropy of Rényi. The spe-
cific conditions ensuring the existence of certain crucial geometrical properties are
studied. A relation among generalized entropies, information theory and statistical
physics is proposed in [15]. Also, very recently, in the interesting paper [9] the
Fisher metric has been related with the universal-group entropy, a trace-form class
of entropic functions which has been proposed in [22].

The article consists of two parts closely related, one devoted to the theory of
generalized entropies and the other one focused on their information-geometrical
interpretation. Let us sum up the main results of this work. In Section 2, we
briefly review the main properties of group entropies. In Section Bl we consider
a large class of entropic functions, the Sj, f-entropies and establish their group
theoretical structure. In Section @, we introduce a composition mechanism that
allows to construct new entropies from known ones and we study the corresponding
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group-theoretical structure, see Section 5 for examples. The main results of classical
information geometry are briefly reviewed in Section 6. In Section [0 a mechanism
for defining new semi-divergences (see below) using known ones is introduced, and
its geometry is studied. In the final Section [§ the divergence D), ¢ is proposed and
we study the associated geometry.

This work represents a foundational step of a broader research project on the
relationship between group theory, generalized entropies and information geometry.
Among many possible open research lines, we mention two that seem to be very
promising: the application of our divergences in the study of statistical manifolds
and problems of statistical inference and, at the same time, a study of the quantum
version of the theory here developed, possibly in connection with the tomographic
approach to quantum mechanics.

2. GROUP ENTROPIES: AN INTRODUCTION

In order to make the subsequent discussion self-contained, first we shall briefly
summarize the main results of the theory of group entropies. The motivation is to
provide an axiomatic formulation of the theory of generalized entropies, that would
allow us to connect them to information theory and statistical mechanics.

We recall that the Shannon-Khinchin axioms were proposed independently by
Shannon and Khinchin as properties characterizing uniquely the mathematical form
of Boltzmann’s entropy as a function S(pi1,...,pw) in the space of probability
distributions. They can be stated as follows.

(SK1) (Continuity). The function S(p1,...,pw) is continuous with respect to
all its arguments

(SK2) (Maximum principle). The function S(p1,...,pw) takes its maximum
value for the uniform distribution p; =1/W,i=1,... W.

(SK3) (Expansibility). Adding an impossible event to a probability distribution
does not change its entropy: S(pi,...,pw,0) = S(p1,...,pw).

(SK4) (Additivity). Given two subsystems A, B of a statistical system,

S(AUB) = S(A) + S(B | A).

It is clear that, by relaxing one of these axioms, new possibilities arise. The first
three axioms are very natural properties, which are crucial both in information the-
ory and statistical mechanics. Let Py denote the set of all probability distributions

of the form p = (p1,...,pw), pi >0, >, p1 = 1.

Definition 1. A function S : Pw — R>( that satisfies the axioms (SK1)—(SK3)
will be said to be an entropic function (or a generalized entropy).

Instead, the additivity axiom (SK4) has been replaced in [22], [23] by a more gen-
eral requirement, called the composability axiom. Precisely, given two statistically
independent systems A and B, we require that the entropy satisfies the composition
law

(1) S(AUB) = ®(5(A),5(B))
where ® should fulfill some properties in order to have a physical meaning;:

(1) ®(z,y) = P(y,x) (commutativity)
(2) ®(x,0) =z (identity)
(3) ®(z,P(y,2)) = D(D(x,y), 2) (associativity)
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These properties are necessary to ensure that a given entropy may be suitable for
information-theoretical and thermodynamic purposes. Indeed, it should be sym-
metric with respect to the exchange of the labels A and B (i.e., commutativity).
Furthermore, if we compose a given system with another system in a state with
zero entropy, the total entropy should coincide with that of the given system (i.e.,
identity). Finally, the composability of more than two independent systems in an
associative way is crucial to ensure path independence in the composition.

If the composability axiom is satisfied in full generality, namely for all possible
distributions defined in the space Py, the corresponding entropy will be said to be
strictly composable. If it is satisfied on the uniform distribution only, the entropy
is weakly composable.

Definition 2. A group entropy is an entropy that satisfies the first three Shannon-
Khinchin axioms and is strictly composable.

3. Sh,f ENTROPIES AND GROUP ENTROPIES

In this Section, we shall study a class of entropic functionals, introduced in [18],
called the Sy s-entropies. Their main interest is of a theoretical nature, since very
many entropies belong to this family. Due to their relevance in classical and quan-
tum information theory, we shall discuss here their group-theoretical interpretation
and clarify under which conditions these functionals are group entropies.

3.1. S, s entropies and properties. We define the (h, f)-entropy class as follows.

Definition 3. [18], [26] Let f : [0,1] — R>o be a continuous, concave (respect.
convex) function and h be a continuous and increasing (respect. decreasing) map.
Then, for p € Py, the function

w
(2) Shr(p) :=h <Z f(m)) ;
=0

where h(f(1)) =0 and f(0) = 0, will be called the S, s entropy.

Remark 4. A huge clase of entropies belong to the class ([2): among them, the
well known entropies of Shannon, Rényi, Tsallis, Kaniadakis, Borges-Roditi and
Sharma-Mittal.

Theorem 5. Let be a Sy.; entropy. Then

a) Sh.5 is an entropic function.

b) If f is strictly concave (respect. convex) with h strictly increasing (respect.
decreasing), then Sy r(p) = 0 iff p, =1 for somei € {1,...,W} and Sy, ;(p) reaches
its mazimun over the uniform distribution only.

Proof. a) The axioms (SK1) and (SK3) are straightforwardly satisfied, because Sj, s
is a composition of continuous maps and f(0) = 0. For proving non-negativity of
Sh,f, observe that being f concave, if = € [0,1] we have

f)z = )z + F(0)(1 - 2) < f(x).
Also, f(1) = f(1) X, pi < 3, f(pi)- Then,

3 0= h(f(1)) < h (Z f<pi>) .
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If f is convex and h is decreasing, the last equality is still valid.
Concerning (SK2), when f is concave, by Jensen’s inequality we have

Thus,

Shr(p) = h (Z f(p») < (Zf <%>> = Shs(p)

where p is the uniform distribution. As before, if f is convex and h is decreasing,
the last equality still holds.
b) If f is strictly concave and h strictly monotone, then inequality (Bl converts
into an equality only for the certainty distribution p; =1 for some ¢ € {1,...,W}.
Also, note that the inequality () is now strict, which implies that the uniform
distribution, being a maximum one, is the unique one. Analogous considerations
hold for the case of f strictly convex and h strictly decreasing.
|

Theorem 6. Let Sy, 5 be an (h, f)-entropy and A and B two statistically indepen-
dent systems, characterized by two independent distributions p € Pw, q € Pwr.
Assume that the relation

(5) Zf(m%) =X Zf(pi)72f(Qj)

is satisfied for a certain function x(x,y). Then the function ® given by
O(z,y) = h (x(h'(2), A" (1))

determines the composition law for the entropy S, f:

(6) Sh.j (AU B) = ®(Sh,f(A), Sn.f(B)) -

Moreover, Sy ¢ will be strictly composable if and only if x is associative, commuta-
tive and x(z, f(1)) = z.

Proof. Given a Sy, s(p) entropy and two independent distributions p, ¢, we obtain
Shsp-qa) = h<Zf(pin)) = h<x<2f(pi)72f(%)>>
ij i j

7) = n(x(1 ) s )

Therefore, if we introduce the function ®(z,y) := h (x(h=(x),h 7 (y))) we get
immediately the composition law (@]).

Let us prove the strict composability of Sy, r. It is easy to ascertain that the
commutativity property: ®(z,y) = ®(y,z) is ensured by the commutativity of
x(z,y). The associativity property is also checked

Oz, ®(y,2)) = h(x(h '(z),h " (®(y,2))) = h(x(h "' (z),
= h(x(x(h~ " (z),h " (y)), h " (2)) = h(x(h~
(8) = O(®(z,y), 2).

= =
—~
3
-
—~
<
=
7
-
=~
S
—
=
=
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Finally,
@(m,O) =h (X(h 1( )7 h_l(o))) )

T
but h=(0) = f(1), s0 ®(x,0) = h (x(h~*(x), f(1))). Now, assuming x(y, f(1)) = v,
we get immediately ®(x,0) = z.
]

Remark 7. If in the previous theorem we assume that f(1) = 0, then we have that
® is a group law if and only if y is. The condition f(1) = 0 is satisfied in many
important cases, as the entropies of Boltzmann-Gibbs, Tsallis, Kaniadakis, etc.

Remark 8. In Theorem 1 of [6] the following result has been proved: suppose to
have a trace-form entropy S = Y, f(p;) where f is a function of class C?((0,1)) N
C1(]0,1]), with f’ not vanishing in any open interval, and assume that the condition
(B) holds with y of class C1, then S coincides with the (trace-form version of ) Tsallis
entropy Sq = » . pilng i, where In,(z) = ””1:;1. Under suitable hypotheses, the
problem of composability of S}, s was also consider in Theorem 2 of [6], obtaining
f(t) = at + bt9. In the previous Theorem [ these additional hypotheses are not

assumed.

4. NEW ENTROPY FUNCTIONS FROM FORMAL GROUPS

The aim of this section is to present a new class of entropic information measures
by means of formal group theory. Our main result is a theorem that allows to
construct iteratively new entropic functions from old ones (for instance, Sy, ¢ studied
above), sharing the same group theoretical structure.

Let us first define the following partial order on R™. We shall say that

(9) x<y iff <y Vie{l,..,m}.

It is not difficult to show the following result.

Proposition 9. Let {S’j}}”:l be a family of entropic functions and let ¢ : Q C
R™ — R, with RS, C Q, be a continuous function such that its restriction to R%,
has range R>q; also assume that ¢ is increasing with respect to the partial order

@: ¢(x) < ((y) whenever & < y. Then, S(p) := ¢ ((Si(p))™,) is a new entropic
function.

Example 10 (Polynomial composition of entropies). As a special realization of the
previous result, we can define the following multi-parametric polynomial function:

n m
Sy =Y > ai . [ISi@)?
=1 61 +..in=i j=1
where o} ;> 0, which is still an entropic function. Note that S(p) is not a Sy, ¢
entropy.

In order to study the composability properties of entropy functions, let us prove
a technical lemma.

Lemma 11. Let ® be a group law. Then,
(10) O(D (1, 22), P(23,24)) = P(P(T0(1), To(2)), P(To(3)s To(a)))

for o € Sy (permutation group of four elements).
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Proof. 1t is enough to prove that x5 and x3 can be transposed. Indeed, transposi-
tions of (1,2) and (3,4) hold by (@) (in the ® conditions) and transpositions (1,3),
(1,4) and (2,4) can be easily decomposed using (2,3) and (1,2) or (3,4). As any
permutation can be written as the composition of transpositions, the result holds.
So, let us check the transposition (2,3):

D(D(x1,22), (a3, 24)) = P(21, P22, P(23,24)))
= ®(z1, P(D(22,23),24)) = P(x1, P(P(23,22),24))
= (I)(,Tl, (I)(,Tg, (I)(,TQ, $4))) = (I)((I)(,Tl, ,Tg), (I)(,TQ, $4)),

where we have used (in order), ([@B) for the external ®, [B]) for the internal ®, () and
then reverse the transpositions in the opposite way (same steps, reverse order). W

We are ready to generate new group entropies from old ones, by means of an
iterative procedure.

Definition 12. Let ®(x,y) be a group law. We introduce the function ®2" :
R%" — R inductively:

(11) dl(x): = id and
(12) @2 (21, ., momir) = BB (21, ooy wam ), B (Tam i1, ey Tymir))
with m € N={0,1,2,...}.
As we have shown in Lemma [IT]
O (x1, 20, 3, 24) = @4(xa(1),xa(g),xa(3),xa(4))

Vo € S4. The following result ensures that new entropy functions based on the
iterated composition of group laws are indeed group entropies.

Theorem 13. Let £ : R — R be a strictly increasing and continuous function.
Let ®(z,y) be a formal group law, n = 2™, m = 0,1,2,... and let ( : R — R,
with ¢ := £ o ®™, be a continuous function. Assume that {Sj(p)}}‘:l are group
entropies, sharing the same composition law ®(x,y). Then, the new entropy Z(p) :=
C(S1(p),...,Sn(p)) satisfies the following composition law:

Z(AU B) = w(Z(4), Z(B))

with

(13) w(z,y) = (@€ (2),E(y))) -

Furthermore, if £(0) = 0, the new entropy will satisfy the group properties.

Proof. Let us proceed by induction. For m = 0, we have ®' = id and ¢ = &£. If
S(p) is a group entropy, then Z(p) = ¢(S(p)) admits the composition law

Z(p*P) = ((S(p*P)) = ¢(@(S(p™), S(p7)))
=C(®(C o C(S(P™). ¢ o C(S(P))))

and the result follows.
Now, let us consider the case m + 1. Set Z;(p) := ®*>" (S1(p), ..., Sam (p)) and
Zg(p) = ®? (ng+1(p), cey S2m+1 (p)))7 so that

Z(p) = €0 ®(Zi(p), Z2(p)) -
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Then, by the induction hypothesis (with & = & = id), the composition law for
Z(p) becomes

Z(p"?)

£ ®(Z1(p"P), Za(p™?)) = €0 B(D(Z1 ("), Z1(07)), ®(Z2(p?), Z2(p"))) =
= o d(B(Z1(p?), Z2(p™)), ®(Z1(P"), Zo(P7)))
where we used Lemma [TTl We finally get:

Z(p*P) = o ®(EH(Z (™), £ (2 (")) -
Thus we have proved that Z(p) admits the composition law given by ([I3)).
Let us prove now that w(z,y) is a group law. Commutativity is evident since ®
is commutative. Concerning associativity, we observe that

wz,wly,z)) = E@E (@), (¢ (y),£(2) = E((PE (@), (9),6(2)))
= ww(z,y),2).
By hypothesis £(0) = 0, so £71(0) = 0 and

w(@,0) = EoP(E7 (2),0) =o€ (2) =,
which proves that w(zx,y) is indeed a group law. We conclude that Z(p) is a group
entropy. |

5. EXAMPLES: NEW MULTIPARAMETRIC GROUP ENTROPIES

Using the theoretical framework developed above, we shall construct new exam-
ples of group entropies associated with the multiplicative formal group law, which is
the simplest nonadditive group law. To this aim, we shall consider Tsallis entropy
and Sharma-Mittal entropy, and we will combine them.

5.1. Tsallis and Sharma-Mittal entropies. Tsallis entropy was introduced in
[25] as a generalization of Boltzmann-Gibbs entropy for long-range weakly chaotic
systems (see [24] for a general discussion). It reads

14 Sy = —==-L.
( ) q q-— 1
An interesting generalization of Tsallis entropy is the bi-parametric entropy de-
fined in 1975 by Sharma and Mittal (SM) in information theory. It has the form

(15) Sualt) = 1 [(fjp)_ -1

where a > 0, and «, 8 # 1. It is straightforward to show that for 5 = o we recover
Tsallis entropy and that when 8 — 1 it reduces to Rényi’s entropy [I7, 12]. As is
well known, both Tsallis and Rényi’s entropies reduce to Shannon’s entropy in the
limit when their parameter tends to 1.
Assuming that the probability distribution satisfies:
p= (i), pij=pipF Vi, j
where p? € Py, p? € Py, then:

(16) Sa (p) = Sa@(pA) + Sa,@(pB) + (1 - B)Sa,@(pA)Sa,@(pB)
The Sharma-Mittal entropy is therefore a group entropy, whose composability law
is given by the multiplicative formal group, as in the case of Tsallis entropy:

(17) O(r,y) =r+y+ (1 -qry =2 y.
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The above function is also known in the literature as the g-sum [24].

SM entropy has also been studied in the context of statistical mechanics [7], [14],
in particular for the description of anomalous diffusion phenomena [g].

We will consider a very simple case of composition of entropies, when £ = id and
m = 1. We propose two examples.

5.2. Combining two copies of Sharma-Mittal entropy. We define the new
tri-parametric group entropy

Za17a2vﬁ(p) = Salﬁﬁ D5 Sﬂtz,ﬁ'

Explicitly, it reads

B—1

1 W ap—1 w %
19 Zawat) = 1= (ae) T (X))
=1 i=1

If 3 € (0,1), then the function ¢ satisfies the hypotheses of Proposition Since
each copy {Sa, s} satisfies the same composition law ([IJ)), by the previous theory
Sai,a2,8 1S again a group entropy, with group law given by

(19) Zal)a27ﬂ(p) = Zahaz,ﬁ(pA)+Zt117012,3(p3)+(1_ﬁ)Zal,azﬁ(pA)Zal,az”@(pB) :

In other words, the group theoretical structure is still given by the formal group
law ([I7). A numerical analysis shows that the entropy (I8]) is concave, for instance,
for a1, a9, € (0,1).

5.3. Combining Tsallis and Sharma-Mittal entropies. Another interesting
possibility arises when we combine Tsallis and Sharma-Mittal entropies by means
of Theorem [I3] choosing again for simplicity £ = id and m = 1. We define,

Za,q(p) == Sa,qg Dq G4

obtaining,

g—1

1 w w i
(20) Za,q:m ll— (ZP?)(ZP?) ] :
i=1 i=1
This entropy satisfies the composition law

(21) Zaq(D) = Zag@™) + Za,g(0”) + (1 = ) Za,g(p™) Zaq (0").

namely, the group theoretical structure is the one defined by the formal group law
(I@). As in the previous example, one can ascertain that the entropy (20) is concave
when «, ¢ € (0,1).

5.4. Entropies with more general composition law. We could also assume
& # id in both examples with £(0) = 0. Then, Proposition [0 is satisfied, so it is an
entropic function. Furthermore, by Theorem [0l the group law will be:

w(z,y) = €€ (@) + €7 () + (1= B (@2)E (v) -
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6. CLASSICAL INFORMATION GEOMETRY: A BRIEF REVIEW

First, we shall review some basic concepts in information geometry to fix the
notation and make precise the definitions adopted. For a thorough exposition con-
cerning this rapidly evolving field, we suggest to consult the monographs [T} [2].

Definition 14 (Parametric model). Consider a family M of probability distri-
butions on A C RF. We shall suppose that each distribution of M may be
parametrized using n real-valued variables [£1,--- ,&,] belonging to an auxiliary
Euclidean space = C R™. Therefore we can identify

M = {pe = p(x;€) | £ = [&1,-+ ,&a] € E},

where p(z; §) is the distribution function on A and £ — pg is injective. We say that
= is a parametric space, and M a parametric model.

Definition 15 (Statistical manifold). A chart on M is an application ¢ : M — R"™,
olpe) =& If ¢ : E = ¢(E) is a C diffeomorphism, we introduce the new
parameters 7 := 1(§), so that M = {py-1¢; |7 € ¥(Z)}. This defines an atlas and
the structure of a differentiable manifold, called a statistical manifold.

It is natural to consider geometric structures on a statistical manifold. Let us
define some of them.

Definition 16 (Fisher metric). Let S be a statistical model. We introduce the
metric

9i3 (€) = /A Oule ()¢ (2)p(w; €)d,

o)

where l¢(z) := logp(z; &) and 0; = e called the Fisher metric.

It can be shown that this bilinear form is symmetric and positive semi-definite,
and positive definite whenever {O1l¢,- -+ ,dple} are linearly independent. We shall
assume positive definiteness.

The inner product is given on each fiber T¢e M by ge = (-, ), with g¢ = gi; (6)d¢i®
d¢d. Precisely, if X, Y € Te M we define

(X,Y)e = gid€' ® d€7 (X0, Y'0)) = g X 0,Y'6] = Ee[(X1e)(Yie)]

where X f := £xf and E¢ denotes the mean value with pe as the distribution
function.

Clearly, Fisher’s metric endows a statistical manifold with the structure of a
Riemannian manifold. We can also introduce a notion of duality in the class of
metric connections.

Definition 17 (Dual structure). Let (M, g) be a Riemannian statistical manifold
and let V, V* be affine connections on M. We say that the connections are dual if

L2(X,Y) =(VzX,Y) +(X,V3Y), VXY, ZeT)(M).
In this case we shall say that (g, V,V*) is a dual structure on M.

Definition 18 (Divergence). Let M be a statistical manifold and suppose that we
are given a smooth function D(:||-) : M x M — R satisfying the following properties
V p,qe M:

i) D(pllg) >0, and D(pllg) = 0 iff p = g,
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ii) DI[0;0;|] is positive definite, where D[0;0;||-](p) := 0;0; D(p(&)||p(§"))]er=e,
0; := 0/0&; and p = p(§).
Then, D is said to be a divergence.
Remark 19. Condition i) guarantees positive semi-definiteness of D. If only this
condition holds, we will talk about a semi-divergence. In general, a divergence is
a pseudo-distance, i.e. it does not in general satisfy the other axioms of distance
(although it could be symmetrized).

Given a divergence, the following geometric structures are defined:

Definition 20. Let D be a divergence on M. We define the following functions:

(22) (x,V)P) .= —D[X||Y] = D[XY]||], X,YeTM
WD)y P _

(23) vOPY, z) = —DIXY||Z], X,Y,ZeTM
@D)y P _

(24) (v&Ply,zy = —D[Z||XY], X,Y,ZeTM

where by D[X||-](p) we mean X*D[5;]|-](p)
They have interesting properties:

Theorem 21. Let D be a divergence on M. Then, the previous structures represent

a metric (eq. 22)) and two affine connections (eqs. @I)—-24)), respectively. In
addition, (M, gP, V(l’D),V@’D)) is a dual structure on M.

7. DIVERGENCE FUNCTIONS FROM GROUP ENTROPIES

The aim of this section is to give an information-theoretical interpretation of the
previous results concerning entropic functions and group entropies. More precisely,
we shall prove that the composition procedure allowing us to construct new group
entropies from old ones, also permits to generate in a similar way new families of
divergence functions from old ones. Their geometric properties will be studied in
detail below.

First, it is straightforward to show the following preliminary result, which allows
us to construct more general semi-divergences using previously defined ones.

Proposition 22. Let {D;}™, be a family of semi-divergences. Let ( :  C R™ —
R, with RZ, U {0} C Q be a function such that
Clrz,ugoy 1 REGU{0} = Rxo and (lrn uioy (@) =0 <= x=0.
Then the function
(25) D(pllg) := ¢(Di(pllq))
s a semi-divergence.

Example 23 (Taylor polynomial for divergences). If D, is a semi-divergence, we
can define the following multi-parametric semi-divergence:

m

Diplla) =D > ot i, [T(Di0ll0)",

=13 ;=i j=1
where o ;>0 (and at least one different from 0) and we have used Proposition
22
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We study now the geometry associated with the semi-divergence [25]) constructed
above.

Theorem 24. Let D(p|lq) = ((D;(p||lq)) be a semi-divergence, where {Dy} 7", is
a family of divergences, and the function (, defined as in Proposition [23, is of
class C3(Y). Then, D is a divergence if and only if O is not a critical point for C.
Furthermore,

i) gij = Ek 18k<( )gz] ,
i) Tije = 4y GC(OTL,
iii) Uk Zk 1814“( )ng
Here 9y f(x) == (0f)/(dx*), whereas ; is the partial derivative with respect to the

parameters representing the coordinates of the statistical manifold.

Proof. Let us define D(£|¢') := (D1(pel|pe), ---, Dm(pel|pe’))- Using the chain rule,

we have

D(¢lig")) Zakc (€1€"))0; Di(£]1€").

Then
(26) 0;0;(C(D(¢]I¢)) Za D(¢]¢) aDkaDHZakc (£11€"))03; Dy.

Now, let us evaluate the previous expression at £ = £’. By Definition [I8] it is clear
that (0;Dg)|er=¢ = 0V k € {1,...,m}. Consequently, the first term vanishes. For
the second term, take into account that Dy (&]|€) = 0 by definition, so it converts
into ), 5k<(0)a§ipk|5,:5. Then, using the definition of g;; for each divergence (see
Definition 20), the result i) follows.

Let us prove that the metric g is positive definite. Observe that by Proposition 22]
the restricted function ¢ := (g2 ,u{oy is such that ¢%(0) = 0 and ¢®(x # 0) > 0.
So, consider the directional derivatives along e € RZ%). As ( is C', the right
derivative (t > 0, (f'(x # 0) — ¢(#(0) > 0), non-negative) equals the derivative, i.e.,

+ -~ .
Tl cen = jt C(et) = 0:¢(0)e’ > 0.
t=0 i

dt
Since by hypothesis 0 is not a critical point for ¢, then 3 8;¢ (0) not vanishing. If
3 T such that 9;¢(0) < 0 when i € Z, define ¢; € R, such that e} := [ if i € Z and

et:=1"1if i ¢ Z. Then
Jim, > 9:c(0)e

thus 37 € N such that 37, 9;((0)e’ < 0, but it must be non-negative. Therefore,
T =0, ie., 9;¢(0) > 0 and at least one of these derivatives is positive. Then

V), :Zgijvivj Zakg (v,v) .
ij

because by assumptions gi, the metrics associated with the divergences Dy are
positive definite and the coefficients are non-negative. Equality holds if and only
if ,¢(0) (v, v),, = 0Vk, but let & such that Ik €(0) > 0 (we have shown above
that such &’ ex1sts) o (v,v), , = 0. By positive definiteness of g, v = 0; thus we
conclude that g is positive definite.

t=0
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Regarding the connection symbols, just note that if we differentiate eq. (28] with
respect to &, any summand which includes one partial derivative of D will vanish,
so the only term will be (after evaluating at £ = &'):

> 91¢(0)0%,0,Dyler e
l

and then, the result for I';;;, follows. A similar derivation can be done for I';; ,. W

Remark 25. Notice that if we differentiated again, that derivative would not be
a linear combination of the derivatives of Dy (as it is for the second and third
derivative, i.e., for g and T'), new non-linear terms would arise.

Corollary 26. The new connection is given by:

(27) reE) =Y An@©rile)
l,n

where A7} (§) = Ekm 5lC(0)9mk(§)91(£ (&)

Proof. Indeed, by Definition
D
)

3

(V0,0;,00)° =Tij and  (V5,0;,0)" = (T,0;, 0,
so we have

)l
(28) Féjglk = Z 8l<(0)g]({;7z,rij( )7
l

and then it easily follows if we multiply the previous expression (28) by ¢*™, the
inverse of g, and sum it over k. Note that g =), 8l§(0)g(l) is invertible because it

is positive definite.
|

Example 27. Consider the semi-divergence of Example 23l If the hypotheses of
Theorem are satisfied, the associated new metric will depend linearly on the
previous metrics: g;; = 221:1 a,lcgfj.

8. THE Dy, s DIVERGENCE AND ITS GEOMETRY

In this Section, we will discuss the information geometry related to the class
of (h, f)-entropies. The results obtained here can be seen as a particular case of
the previous general approach; however, we will discuss them explicitly due to the
considerable relevance of this class in many applicative contexts.

We will show that the SM divergence belongs to a more general family of diver-
gences that will be defined below.

Definition 28. Let f,h be functions such that f : R>o — R is continuous and
strictly concave (resp. convex), h is continuous and strictly decreasing (resp. in-
creasing) with h(f(1)) = 0. Let Py}, denote the space of probability distributions
(po,p1,---,Dn), with p; > 0 Vi. For p,q € ’PJV we introduce the (h, f)-divergence

W .
(29) Di.s(pllg) := h <Z a4 f (%)) :

i=0 v
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An analogous expression holds for the continuous case. The latter divergence
can be considered as a generalization of the standard f-divergence [2]. Apart the
Kullback-Leibler divergence, the Rényi’s and a-divergences, another interesting par-
ticular case in the class (29) is given, for instance, by the Sharma-Mittal divergence,
whose geometry has been recently investigated by Nielsen et al. in [I6]. The SM-
divergence is defined for p,q € Py by

W o l-a) =2
(Zi:opi qil ) e —1
P |
Theorem 29. Let Dy, ¢(pllq) be the generalized divergence (29), where f,h are

twice differentiable functions, with f strictly concave (resp. convex) and h strictly
increasing (resp. decreasing). Then, the associated metric tensor is given b

(30) Dag(pllg) :=

i) Discrete case, for p € int(Py)

5ij 1 )
= (2 ) )£ ).
9ij <pj - (f() (1)
i) Continuous case,

g9ij = W (f()f" (Vg

where gf; is the Fisher metric.

Proof. We have

Zf(pz‘/‘h)qz' <f (ZPi%) = f(1)

by Jensen’s inequality. Then,

h (Z f(pz-/qnql-) > h(f(1)) =0.

As f is strictly concave, equality holds iff p;/q; = p;/q; = cVi,j, but as ), p; =
>4 =1, then, ¢ =1, i.e, p; = ¢; Vi. If f is strictly convex and h is decreasing,
the last inequality remains unchanged. A direct calculation shows

D011 = 5 () [ 2SS
Q p(z)

Now, using 9;p(§,x) = 0;logp(§, x)p(&, z) the result follows, see Definition In

the discrete case, the calculation is straightforward, now take into account that

po=1-— Ezl p() and general conditions for probability distributions. The result

is the one stated above, discrete Fisher metric. To prove it is positive definite, note

that

dzx.

W w 2
i () (Ciiivi)
gijv'v) = E + = > 0.
! — Pi Po

And if equality holds, (v*)? = 0 Vi, so it is positive definite. [ |

The dual connections associated with the (h, f)-divergences are determined in
the following

"n accordance with Chentsov’s theorem, [1].
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Theorem 30. Let Dy, ¢(p|lq) be the generalized divergence [29)), where f, h are three
times differentiable functions. Then, its associated dual connections (Definition[20)
are given by:

h,f —a h,f)* a
ng,kj) = Crz('j,k)7 Fz('j,kf) = Cl—‘l('j,;w

where ¢ := W' (f(1))f"(1), e« = (2f"(1)+ 3f"(1))/f"(1) and:
@ 1-
rh© = Be | (a0 + 15 oot ) @ute)|
This implies: V) = (=) v = (@ (the a-connection, [I])
Proof. A direct, but lengthy calculation shows
0 pe () Ope ()
O
ij,k ( ( )) ( ) o p(l’)

W) 4 ) [ O pe)dipe(s)
(1) (L P(2)? d)'

Now, we use the fact that 9ipe = 0;l¢(x)pe and 8i2jl§ = —ng&-pgajpg —I—pglafjp to

finally get:
///(1)
C- Eg 81'8]'15 + | —=——=+2 (%lg(?jlg (8kl5)

(1)
) L, 1=

F7(1) +2= 5 2 the result follows. A similar calculation can be re-

peated for the other set of symbols. The last statement follows from the definitions,
ie.,

and solving

E _ kil p—a _ —1_kl 7—a _ pk(—a)
I‘ij =g CFij,l =c gFCFij,l = l"ij .
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