¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Quantum error correction with the semion code



Downloads per month over past year

Dauphinais, Guillaume and Ortíz Martín, Laura and Varona Angulo, Santiago and Martín Delgado, Miguel Ángel (2019) Quantum error correction with the semion code. New journal of physics, 21 . ISSN 1367-2630

[thumbnail of Martín Delgado Alcántara MÁ 124 LIBRE+CC.pdf]
Creative Commons Attribution.


Official URL: http://dx.doi.org/10.1088/1367-2630/ab1ed8


We present a full quantum error correcting procedure with the semion code: an off-shell extension of the double-semion model. We construct open-string operators that recover the quantum memory from arbitrary errors and closed-string operators that implement the basic logical operations for information processing. Physically, the new open-string operators provide a detailed microscopic description of the creation of semions at their end-points. Remarkably, topological properties of the string operators are determined using fundamental properties of the Hamiltonian, namely, the fact that it is composed of commuting local terms squaring to the identity. In all, the semion code is a topological code that, unlike previously studied topological codes, it is of non-CSS type and fits into the stabilizer formalism. This is in sharp contrast with previous attempts yielding non-commutative codes.

Item Type:Article
Additional Information:

© 2019 IOP publishing ltd.
We thank Fiona Burnell and Juan Miguel Nieto for helpful discussions. We acknowledge financial support from the Spanish MINECO grants FIS2012-33152, FIS2015-67411, and the CAM research consortium QUITEMAD +, Grant No. S2013/ICE-2801. The research of MAM-D has been supported in part by the US Army Research Office through Grant No. W911N F-14-1-0103. SV thanks FPU MECD Grant.

Uncontrolled Keywords:Topological phases; Computation.
Subjects:Sciences > Physics
ID Code:55962
Deposited On:03 Jul 2019 14:42
Last Modified:03 Jul 2019 14:42

Origin of downloads

Repository Staff Only: item control page