Publication:
Estudio de la expresión diferencial de proteinas de Porphyrormonas Gingivalis en biofilms versus en estado planctónico

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivo: El objetivo de esto trabajo fue estudiar la expresión diferencial de proteínas de Porphyromonas gingivalis cuando está formando biofilm respecto a cuando está en estado planctónico. Materiales y Métodos: A partir de un cultivo en medio BHI modificado de P. gingivalis ATCC33277 en fase exponencial se desarrolló el biofilm monoespecie sobre discos estériles de hidroxiapatita en una placa multipocillo de 24 pocillos. El cultivo planctónico se desarrolló en viales de plástico de 50 mL tipo Falcón. En ambos casos se ajustó la concentración bacteriana a 107 unidades formadoras de colonias (ufc)/mL y se incubó en condiciones de anaerobiosis a 37C durante 96 horas (3 réplicas biológicas de cada una de las condiciones). Para recuperar las bacterias del biofilm se extrajo el disco, se añadió 1 mL de PBS (Phosphate Buffer Saline), se vorteó durante 3 minutos recogiendo la suspensión, añadiéndola a un eppendorf y centrifugando a 13000 rpm a 4ºC durante 5 minutos. Para recuperar las bacterias en estado planctónico, se centrifugó la suspensión bacteriana a 9000 rpm a 4ºC durante 10 minutos. Posteriormente, se procedió a la extracción de proteínas en ambos casos. Para ello se siguieron los siguientes pasos: 1) los precipitados se resuspendieron en PBS junto con inhibidores de proteasas para lisar las células bacterianas con un sonicador de punta, 2) las muestras se limpiaron para eliminar posibles restos de sales, detergentes, lípidos e impurezas, 3) las proteínas se solubilizaron en urea 8M mediante vortex y utilizando un sonicador de baño, y 4) se cuantificaron empleando el método de Bradford y el fluorímetro Qubit 3.0. Para comprobar la cuantificación proteica se realizó un gel de control de carga (SDS-PAGE 10%). El estudio de expresión diferencial se realizó sin marcaje proteico ni peptídico acoplado a un espectrómetro de masas (Label-Free (LCMS/MS)). Resultados: Se pudieron cuantificar un total de 614 proteínas, de las cuales 73 se expresaban diferencialmente en las condiciones de crecimiento. De estas proteínas diferenciales, 28 se sobre-expresaban cuando la bacteria estaba formando biofilm y 45 proteínas se reprimían en este modo de crecimiento. Conclusión: P. gingivalis presentó expresión diferencial de diversas proteínas en el estado de biofilm en relación al estado planctónico. Estas proteínas que se expresan diferencialmente en el biofilm pueden ser buenas candidatas para su empleo en el diagnóstico y tratamiento de la periodontitis.
Description
UCM subjects
Keywords
Citation
1. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Clinical Periodontology. 2018;45 Suppl 20:S162S70. 2. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology. 2018;89 Suppl 1:S159-s72. 3. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis - a comprehensive review. Journal of Clinical Periodontology. 2017;44 Suppl 18:S94-S105. 4. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annual Review of Microbiology. 1987;41:435-64. 5. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annual Review of Microbiology. 1995;49:711-45. 6. Marsh PD. Dental plaque: biological significance of a biofilm and community life-style. Journal of Clinical Periodontology. 2005;32 Suppl 6:715. 7. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-22. 8. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002;15(2):16793. 9. Marsh PD, Bowden GHW, Allison DG, Gilbert P, Lappin-Scott HM, Wilson M. Microbial community interactions in biofilms. 2000:167-98. 10. Lang NP, Lindhe J. Clinical Periodontology and Implant Dentistry, 2 Volume Set: Wiley; 2015. 11. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontology 2000. 2002;28:12-55. 12. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontology 2000. 2011;55(1):16-35. 13. Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, et al. Microbial interactions in building of communities. Molecular Oral Microbiology. 2013;28(2):83-101. 14. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ, Jr. Communication among oral bacteria. Microbiology and molecular biology reviews : MMBR. 2002;66(3):486-505, table of contents. 15. Kolenbrander PE, Palmer RJ, Jr., Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontology 2000. 2006;42:47-79. 16. Kolenbrander PE, Palmer RJ, Jr., Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nature Reviews Microbiology. 2010;8(7):471-80. 17. Consensus report. Periodontal diseases: pathogenesis and microbial factors. Annals of Periodontology. 1996;1(1):926-32. 18. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, Jr. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology. 1998;25(2):134-44. 19. Socransky SS, Haffajee AD. The Bacterial Etiology of Destructive Periodontal Disease: Current Concepts. Journal of Periodontology. 1992;63 Suppl 4S:322-31. 20. Rafiei M, Kiani F, Sayehmiri F, Sayehmiri K, Sheikhi A, Zamanian Azodi M. Study of Porphyromonas gingivalis in periodontal diseases: A systematic review and meta-analysis. Medical Journal of the Islamic Republic of Iran. 2017;31(1):355-62. 21. Rafiei M, Kiani F, Sayehmiri K, Sayehmiri F, Tavirani M, Dousti M, et al. Prevalence of Anaerobic Bacteria (P. gingivalis) as Major Microbial Agent in the Incidence Periodontal Diseases by Meta-analysis. Journal of Dentistry (Shiraz, Iran). 2018;19(3):232-42. 22. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000. 2005;38:72-122. 23. Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiology and Molecular Biology Reviews : MMBR. 1998;62(4):1244-63. 24. Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiology and Immunology. 2000;15(6):341-9. 25. Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host & Microbe. 2011;10(5):497-506. 26. Hajishengallis G, Darveau RP, Curtis MA. The keystonepathogen hypothesis. Nature Reviews Microbiology. 2012;10(10):717-25. 27. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, et al. From proteins to proteomes: large scale protein identification by twodimensional electrophoresis and amino acid analysis. Bio/technology (Nature Publishing Company). 1996;14(1):61-5. 28. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, HumpherySmith I, Hochstrasser DF, et al. Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It. Biotechnology and Genetic Engineering Reviews. 1996;13(1):19-50. 29. Keller M, Hettich R. Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiology and Molecular Biology Reviews : MMBR. 2009;73(1):62-70. 30. Gupta A, Govila V, Saini A. Proteomics - The research frontier in periodontics. Journal of Oral Biology and Craniofacial Research. 2015;5(1):46-52. 31. Anand S, Samuel M, Ang CS, Keerthikumar S, Mathivanan S. Label-Based and Label-Free Strategies for Protein Quantitation. Methods in Molecular Biology (Clifton, NJ). 2017;1549:31-43. 32. Savidor A, Levin Y. Quantification of proteins by label-free LCMS(E.). Methods in Molecular Biology (Clifton, NJ). 2014;1156:223-36. 33. Levin Y, Bahn S. Quantification of proteins by label-free LCMS/MS. Methods in Molecular Biology (Clifton, NJ). 2010;658:217-31. 34. O'Neill JR. An Overview of Mass Spectrometry-Based Methods for Functional Proteomics. Methods in Molecular Biology (Clifton, NJ). 2019;1871:179-96. 35. Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. Journal of Proteome Research. 2009;8(7):3752-9. 36. Wong JW, Cagney G. An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods in Molecular Biology (Clifton, NJ). 2010;604:273-83. 37. Romero-Lastra P, Sanchez MC, Ribeiro-Vidal H, LlamaPalacios A, Figuero E, Herrera D, et al. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PloS One. 2017;12(4):e0174669. 38. Sanchez MC, Romero-Lastra P, Ribeiro-Vidal H, LlamaPalacios A, Figuero E, Herrera D, et al. Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiology. 2019;19(1):58. 39. Lo AW, Seers CA, Boyce JD, Dashper SG, Slakeski N, Lissel JP, et al. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiology. 2009;9:18. 40. Svensater G, Welin J, Wilkins JC, Beighton D, Hamilton IR. Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiology Letters. 2001;205(1):139-46. 41. Llama-Palacios A, Potupa O, Sanchez MC, Figuero E, Herrera D, Sanz M. Aggregatibacter actinomycetemcomitans Growth in Biofilm versus Planktonic State: Differential Expression of Proteins. Journal of Proteome Research. 2017;16(9):3158-67. 42. Ang CS, Veith PD, Dashper SG, Reynolds EC. Application of 16O/18O reverse proteolytic labeling to determine the effect of biofilm culture on the cell envelope proteome of Porphyromonas gingivalis W50. Proteomics. 2008;8(8):1645-60. 43. Rathsam C, Eaton RE, Simpson CL, Browne GV, Berg T, Harty DW, et al. Up-regulation of competence- but not stress-responsive proteins accompanies an altered metabolic phenotype in Streptococcus mutans biofilms. Microbiology. 2005;151(Pt 6):1823-37. 44. Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host? Journal of Clinical Periodontology. 2011;38 Suppl 11:28-35. 45. Yamamoto R, Noiri Y, Yamaguchi M, Asahi Y, Maezono H, Ebisu S. Time course of gene expression during Porphyromonas gingivalis strain ATCC 33277 biofilm formation. Applied and Environmental Microbiology. 2011;77(18):6733-6. 46. Kuboniwa M, Hendrickson EL, Xia Q, Wang T, Xie H, Hackett M, et al. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiology. 2009;9:98. 47. Moon JH, Lee JH, Lee JY. Microarray analysis of the transcriptional responses of Porphyromonas gingivalis to polyphosphate. BMC Microbiology. 2014;14:218. 48. Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Review of Proteomics. 2012;9(3):311-23.