Universidad Complutense de Madrid
E-Prints Complutense

Clúster de FPAAs para reconocimiento de imágenes mediante redes neuronales
Cluster of FPAAs to recognize images using neural networks

Impacto

Downloads

Downloads per month over past year



García Moreno, Daniel (2019) Clúster de FPAAs para reconocimiento de imágenes mediante redes neuronales. [Trabajo Fin de Máster]

[thumbnail of Daniel Garcia Moreno.pdf]
Preview
PDF
Creative Commons Attribution Non-commercial.

168MB


Abstract

La computación analógica está tomando un espcial interés en aquellas aplicaciones que permiten un margen tolerable de error debido a su especial eficiencia energética y rendimiento. Las FPAAs son dispositivos reprogramables que contienen bloques analógicos configurables que permiten configurar en su interior circuitos analógicos reconfigurables. Como ejemplo de aplicación de este TFM se aborda la implementación de una red neuronal de tipo Feedforward que procesa imágenes de 32x32 píxeles, lo cual constituye un avance respecto a otros proyectos más pequeños en cuanto a número de entradas y neuronas se refiere, así como el tamaño de las imágenes. Las operaciones de las redes neuronales de tipo Feedforward se basan en sumas y multiplicaciones, que dentro de la computación analógica son operaciones de bajo coste. Este aspecto junto al bajo consumo de las FPAAs despierta cierto interés para ser investigado. Puesto que una FPAA por sí sola no tiene recursos suficientes para implementar una red neuronal, el objetivo de este proyecto se ha basado en la construcción de un clúster de 16 FPAAs, y como caso de uso, se ha diseñado e implementado una red neuronal que se ejecuta en el clúster, para posteriormente, evaluar los resultados obtenidos.

Resumen (otros idiomas)

Analog computing is taking relevance on some applications where a range of error is allowed due to energy efficiency and performance.FPAAs are programmable devices and allow to build configurable analog designs by configurable analog blocks. An example of the application of this TFM is the implementation of a Feedforward neural network that processes 32x32 pixel images, which is an advance compared to other smaller projects. The operations of Feedforward neural networks are additions and multiplications. This type of operations are low cost on analog computing. The low power consumption and performance is taking some interest. One FPAA cannot implement a simple neural network because one FPAA doesn’t have enough resources. The aim of this project is to build a cluster of 16 FPAAs to run a simple neural network to classify images, and finally, to analyze the results.

Item Type:Trabajo Fin de Máster
Additional Information:

Trabajo de Fin de Máster, Universidad Complutense, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, Curso 2018/2019

Directors:
Directors
Botella Juan, Guillermo
Barrio García, Alberto del
Uncontrolled Keywords:FPAA, Clúster, Red neuronal, DAC, Computación analógica, Arduino, Clasificación
Palabras clave (otros idiomas):FPAA, Cluster, Neural Network, DAC, Analog computing, Arduino, Classification
Subjects:Sciences > Computer science
Título del Máster:Máster en Ingeniería Informática
ID Code:57530
Deposited On:30 Oct 2019 15:42
Last Modified:09 Mar 2020 11:59

Origin of downloads

Repository Staff Only: item control page