Impacto
Downloads
Downloads per month over past year
Cobos, Fernando and Edmunds, David E. and Kühn, Tomas (2019) Nuclear embeddings of Besov spaces into Zygmund spaces. Journal of Fourier analysis and applications . ISSN 1069-5869 (In Press)
Preview |
PDF
327kB |
Abstract
Let d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ the embedding Id fails to be nuclear. Furthermore, if a = −1, the embedding Id : Bd∞,∞(Ω) −→ L∞ (log L)−1 (Ω) is not nuclear.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Análisis matemático, Espacios de Besov, Espacios de Zygmund |
Palabras clave (otros idiomas): | Besov spaces, Zygmund spaces, nuclear embeddings |
Subjects: | Sciences > Mathematics Sciences > Mathematics > Mathematical analysis |
ID Code: | 58106 |
Deposited On: | 13 Dec 2019 12:23 |
Last Modified: | 16 Dec 2019 09:07 |
Origin of downloads
Repository Staff Only: item control page